

Research Journal of Pharmaceutical, Biological and Chemical Sciences

In vitro cytotoxic, Antimicrobial and Antioxidant activity of 6-Chloro-2,3-dihydro[1,2,4]triazolo[3,4-b][1,3]benzoxazole Derivatives.

Shreedhara SH¹, Vagdevi HM^{1*}, Jayanna ND¹, Raghavendra R², Kiranmayee P³, and Prabhu Das³

ABSTRACT

The novel compounds 6-Chloro-2,3 dihydro[1,2,4]triazolo[3,4-b][1,3]benzoxazole derivatives **4-19** have been synthesized by conventional method. The cyclization of the compounds **3(a-b)** with different aromatic benzoic acid derivatives in POCl₃ resulted in the formation of the compounds **4-19**. The structures of the compounds were elucidated by spectral and elemental analysis. Most of the compounds were exhibited potent activity in the antibacterial study and were enriched by the MIC results. Some of the synthesized derivatives exhibited potent cytotoxic activity towards Peripheral Blood Mononuclear Cells (PBMCs) with the influence of functional groups attached with central moiety. The antioxidant screening was also done for the same compounds to obtain promising results from the synthesized compounds. **Keywords:** Benzoxazole, Triazoles, Benzoic acid, POCl₃, PBMCs.

*Corresponding author

¹Department of Chemistry, Sahyadri Science College (Autonomous), Shimoga-577203, India

²Department of Microbiology and Cell Biology Indian Institute of Science Bangalore. India

³Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research, Tamaka-563103, Kolar, Karnataka, India

INTRODUCTION

The rising prevalence of multi-drug-resistant microbial strains such as methicillin-resistant Staphylococcus aureus, Staphylococcus epidermis and vancomycin-resistant Enterococcus etc is a problem of ever-increasing significance [1]. Although antimicrobial resistance was recognized soon after the deployment of sulfonamides and penicillin [2], it now appears that the emergence of antibiotic-resistant bacteria is inevitable to almost every new drug. As a consequence, new efforts to develop new antibacterial agents are highly needed. Benzoxazole ring is one of the most common heterocycles in medicinal chemistry. Previous reports revealed that substituted benzoxazoles possess diverse chemotherapeutic activities including antitumor [3], anticancer [4], antibacterial [5], anti HIV-1 [6], antioxidant [7], cyclooxygenase inhibitory [8], antifungal [9], antitubercular [10], 5HT-3 receptor antagonists [11], anti-inflammatory, analgesic and cyclin dependent kinase inhibitory [12], 5-lipoxygenase inhibitory [13] and melatonin receptor agonist [14] activities.

1,2,4-Triazole derivatives have consistently attracted scientific and practical interest because of their widely varying chemical properties, synthetic versatility and pharmacological activities, such as antibacterial [15], antifungal [16], anti-tubercular [17], analgesic [18], anti-inflammatory [18], anticancer [20], anticonvulsant [21], antiviral [22], insecticidal [24] and antidepressant [25] properties. Keeping in view of the significance of benzoxazoles and triazolesas potential pharmacophores and in continuation of our research work on the synthesis of novel series of biologically active heterocyclic derivatives, it was planned to synthesize some molecules having both benzoxazole and triazole nucleus together, which may imparts cytotoxic activity and antibacterial effect. The compounds were screened for their antimicrobial activity, minimum inhibition concentration evaluated at four different concentrations.

EXPERIMENTAL SECTIONS

(i)Synthesis of 4-(6-chloro[1,2,4]triazolo[3,4-b][1,3]benzoxazol-3-yl)aniline 4

The compounds [26] 3(a-b) (0.01mol) were dissolved in pocl₃ (10ml), followed by treated with benzoic acid (0.01mol) and refluxed for 8 hr. then the reaction mixture was poured onto crushed ice. Solid product thus obtained was filtered, dried and recrystalized from ethanol to get compound 4. The compounds **5-19** can be prepared by following similar procedure.

Yield: 0.3821 (70 %), m.p. $253-255^{\circ}$ C; IR (KBr v_{max} cm⁻¹): 3006.16, (Ar C-H str), 1485.35 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.80-7.88(m, 7H, Ar-H), 3.55 (s, 2H, NH₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 156.52, 155.23, 152.14, 150.41, 149.36, 148.35, 146.19, 143.65, 141.31, 137.08, 135.65, 131.19, 129.62, 77,28, 55.38. elemental analysis: calculated (%) for C₁₄H₉ClN₄O; C,59.06; H,3.19; N,19.68; observed C,59.02; H,3.15; N,19.61; M⁺¹, 285; M⁺²,287.

(ii)Synthesis of 6-chloro-3-(2,4-difluorophenyl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 5

Yield: 0.2712 (76 %), m.p. $225-227^{0}$ C; IR (KBr v_{max} cm⁻¹): 3004.59, (Ar C-H str), 1488.14 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.88-7.92(m, 6H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 155.10, 153.29, 151.08, 150.60, 147.91, 146.46, 144.16, 141.09, 139.63, 137.56, 134.48, 130.19, 125.31, 77.62. elemental analysis: calculated (%) for $C_{14}H_6CIF_2N_3O$; C,55.01; H,1.98; N,13.75; observed C,54.95, H,1.92; N,13.69; M⁺¹,306; M⁺²,308, M⁺⁴,310, M⁺⁶,312.

(iii)Synthesis of 6-chloro-3-(furan-2-yl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 6

Yield: 0.3216 (81 %), m.p. 188-190° C; IR (KBr v_{max} cm⁻¹): 3006.49, (Ar C-H str), 1484 .59 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.76-7.85(m, 6H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 154.10, 152.67, 149.54, 146.18, 144.39, 142.15, 139.49, 135.39, 133.92, 129.38, 76.94, 56.75. elemental analysis: calculated (%) for $C_{12}H_6CIN_3O_2$; C,55.51, H,2.33, N,16.18; observed C,55.47; H,2.028; N,16.14; M^{+1} ,260; M^{+2} ,262.

(iv)Synthesis of 6-chloro-3-(pyridin-3-yl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 7

Yield: 0.2947 (73 %), m.p. 212-2140 C; IR (KBr v_{max} cm⁻¹): 3001.26, (Ar C-H str), 1482.66 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.82-7.96 (m, 7H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 154.27, 153.16,

July – August 2017 RIPBCS **Page No. 836** 8(4)

152.67, 151.68, 148.51, 146.81, 145.38, 142.43, 133.03, 129.85, 125.19, 78.40, 55.76. elemental analysis: calculated (%) for C₁₃H₉ClN₄O; C,57.26; H,3.33; N,20.55; observed C,57.14; H,3.22; N,20.18; M⁺¹,271; M⁺²,272.

(v)Synthesis of 1-[4-(6-chloro[1,2,4]triazolo[3,4-b][1,3]benzoxazol-3-yl) phenyl]methanedi amine 8

Yield: 0.3651 (81 %), m.p. 281-283⁰ C; IR (KBr v_{max} cm⁻¹): 3003.86, (Ar C-H str), 1483.50 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.84-7.86(m, 7H, Ar-H), 3.86 (s, 4H, NH₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 155.68, 154.18, 151.48, 148.06, 146.26, 145.87, 143.14, 140.63, 138.56, 133.19, 129.25, 125.43, 77.28, 52.46. elemental analysis: calculated (%) for C₁₅H₁₄ClN₅O; C,57.42, H,3.86, N,22.32; observed C,57.38; H,3.81; N,22.27; M⁺¹, 314; M⁺²,316.

(vi) Synthesis of 6-chloro-3-(4-nitrophenyl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 9

Yield: 0.3416 (86 %), m.p. 221-223⁰ C; IR (KBr v_{max} cm⁻¹): 3005.36, (Ar C-H str), 1477.02 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.80-7.87 (m, 7H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 155.46, 154.76, 150.17, 148.15, 145.35, 143.16, 140.28, 137.92, 133.47, 128.08, 122.94, 119.53, 78.40, 53.19. elemental analysis: calculated (%) for C₁₄H₇ClN₄O₃; C,53.43; H,2.24; N,17.80; observed C,53.39; H,2.21; N,17.74; M⁺¹,315; M⁺²,317.

(vii) Synthesis of 6-chloro-3-(pyridin-2-yl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 10

Yield: 0.2965 (83 %), m.p. 261-263⁰ C; IR (KBr v_{max} cm⁻¹): 3001.63, (Ar C-H str), 1482.46 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.82-7.79 (m, 7H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 154.67, 152.16, 149.38, 147.48, 144.12, 142.36, 139.85, 135.41, 132.34, 125.18, 122.72, 76.83, 56.48. elemental analysis: calculated (%) for C₁₃H₇ClN₄O; C,57.69; H,2.61; N,20.70; observed C,57.65; H,2.58; N,20.64; M⁺¹,271; M^{+2} ,273.

(viii) Synthesis of 3-(6-chloro[1,2,4]triazolo[3,4-b][1,3]benzoxazol-3-yl)phenol 11

Yield: 0.3208 (80 %), m.p. 238-240⁰ C; IR (KBr v_{max} cm⁻¹): 3004.63, (Ar C-H str), 1485.71 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.80-7.96 (m, 7H, Ar-H), 5.67 (s, 1H, OH). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 153.13, 152.85, 150.64, 148.37, 145.71, 143.49, 142.87, 137.60, 135.05, 133.53, 127.33, 125.66, 77.52, 55.43. elemental analysis: calculated (%) for $C_{14}H_8CIN_3O_2$; C,58.86; H,2.82; N,14.71; observed C,58.82; H,2.78; N,14.68; M⁺¹,286; M⁺²,288.

(ix) synthesis of 4-(7-nitro[1,2,4]triazolo[3,4-b][1,3]benzoxazol-3-yl)aniline 12

Yield: 0.3617 (85 %), m.p. 226-2280 C; IR (KBr v_{max} cm⁻¹): 3009.46, (Ar C-H str), 1488.63 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.76-7.92(m, 7H, Ar-H), 3.68 (s, 2H, NH₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 155.29, 154.32, 151.83, 149.68, 147.63, 145.33, 143.85, 141.13, 139.39, 137.79, 132.57, 130.77, 77.28, 55.62. Elemental analysis: calculated (%) for C₁₄H₉N₅O₃; C,56.95; H,3.07; N,23.72; observed C, 56.92; H, 3.03; N,23.68; M⁺¹, 295.

(x)Synthesis of 3-(2,4-difluorophenyl)-7-nitro[1,2,4]triazolo[3,4-b][1,3]benzoxazole 13

Yield: 0.2286 (76 %), m.p. 264-2660 C; IR (KBr v_{max} cm⁻¹): 3004.16, (Ar C-H str), 1478.46 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.88-7.98(m, 6H, Ar-H), 3.65 (s, 2H, NH₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 154.35, 152.28, 150.44, 148.11, 146.30, 144.05, 142.61, 140.36, 138.89, 136.50, 133.22, 127.14, 79.16, 56.93. Elemental analysis: calculated (%) for $C_{14}H_6F_2N_4O_3$; C,53.18; H,1.91; N,17.72; observed C, 53.15; H, 1.88; N,17.68; M⁺¹, 316, M⁺², 318, M⁺⁴, 320.

(xi) Synthesis of 3-(furan-2-yl)-7-nitro[1,2,4]triazolo[3,4-b][1,3]benzoxazole 14

Yield: 0.2826 (74 %), m.p. 216-218^o C; IR (KBr v_{max} cm⁻¹): 3011.65, (Ar C-H str), 1491.63 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.75-7.95(m, 6H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 155.43, 153.85,

RIPBCS July - August 2017 8(4) **Page No. 837**

151.68, 148.53, 143.71, 141.36, 138.79, 134.13, 132.92, 126.37, 77.56, 56.16. elemental analysis: calculated (%) for C₁₂H₆N₄O₄; C,53.34, H,2.24, N,20.74; observed C,53.31; H,2.21; N,20.70; M⁺¹,270.

(xii)Synthesis of 7-nitro-3-(pyridin-3-yl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 15

Yield: 0.2634 (72 %), m.p. 246-2480 C; IR (KBr v_{max} cm⁻¹): 3009.32, (Ar C-H str), 1489.41 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.84-7.91(m, 7H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 156.12, 154.82, 150.67, 148.55, 144.83, 140.60, 137.46, 134.13, 133.15, 130.03, 124.70, 78.42, 55.61. elemental analysis: calculated (%) for $C_{13}H_7N_5O_3$; C,55.52, H,2.51, N,24.90; observed C,55.48; H,2.48; N,24.84; M^{+1} ,281.

(xiii) Synthesis of 1-[4-(7-nitro[1,2,4]triazolo[3,4-b][1,3]benzoxazol-3-yl)phenyl]methanedi amine 16

Yield: 0.3218 (78 %), m.p. 291-293⁰ C; IR (KBr v_{max} cm⁻¹): 3008.24, (Ar C-H str), 1483.83 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.78-7.94(m, 7H, Ar-H), 3.94 (s, 4H, NH₂). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 153.46, 152.71, 150.62, 148.49, 145.16, 144.20, 142.31, 139.48, 137.72, 134.65, 130.15, 126.37, 78.13, 55.18, 45.63. elemental analysis: calculated (%) for $C_{15}H_{12}N_6O_3$; C,55.55, H,3.73, N,25.91; observed C,55.50; H,3.69; N,25.88; M⁺¹, 324.

(xiv) Synthesis of 7-nitro-3-(4-nitrophenyl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 17

Yield: 0.3751 (88 %), m.p. 204-206⁰ C; IR (KBr v_{max} cm⁻¹): 3003.26, (Ar C-H str), 1482.18 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.76-7.95 (m, 7H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 154.28, 152.49, 150.72, 149.62, 146.38, 144.06, 138.13, 134.14, 133.47, 128.08, 124.94, 122.02, 77.96, 55.38. elemental analysis: calculated (%) for $C_{14}H_7N_5O_5$; C,51.70; H,2.17; N,21.53; observed C,51.67; H,2.13; N,21.49; M^{+1} ,325.

(xv) Synthesis of 7-nitro-3-(pyridin-2-yl)[1,2,4]triazolo[3,4-b][1,3]benzoxazole 18

Yield: 0.3193 (78 %), m.p. 287-289⁰ C; IR (KBr v_{max} cm⁻¹): 3005.72, (Ar C-H str), 1485.81 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.77-7.93 (m, 7H, Ar-H). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 155.14, 153.44, 148.63, 146.77, 143.12, 142.97, 140.18, 136.28, 131.67, 126.72, 123.68, 77.28, 56.71. elemental analysis: calculated (%) for C₁₃H₇N₅O₃; C,55.52; H,2.51; N,24.90; observed C,55.48; H,2.47; N,24.88;M⁺¹,281.

(xvi) Synthesis of 3-(7-nitro[1,2,4]triazolo[3,4-b][1,3]benzoxazol-3-yl)phenol19

Yield: 0.2618 (83 %), m.p. 233-2350 C; IR (KBr v_{max} cm⁻¹): 3006.97, (Ar C-H str), 1492.12 (Ar C-C str in ring). ¹H NMR (DMSO-d₆, 400MHz) δ. 6.73-7.86 (m, 7H, Ar-H), 5.72 (s, 1H, OH). ¹³C NMR (DMSO-d₆, 100 MHz) δ: 155.47, 153.38, 151.82, 147.09, 146.63, 141.87, 139.67, 136.04, 132.86, 131.73, 126.48, 124.35, 78.08, 56.82. elemental analysis: calculated (%) for C₁₄H₈N₄O₄; C,56.76; H,2.72; N,18.91; observed C,56.67; H,2.68; N,18.88; M⁺¹,286.

RESULTS AND DISCUSSION

Chemistry

All the compounds were synthesized as routed in the scheme 1. The chloro and nitro substituted 2aminophenol were treated with carbon disulphide and potassium hydroxide in the presence of methanol solvent to get substituted 1,3-benzoxazole-2-thiol 1(a-b) compounds. The compounds 1(a-b) were treated with iodoethane in the presence of sodium hydroxide in DMSO solvent to get 2-(ethylsulfanyl)-1,3-benzoxazole 2(a-b) followed by reaction with hydrazine hydride by using ethanol solvent to get intermediate compounds 2hydrazinyl-1,3-benzoxazole 3(a-b) (Scheme-1). The compounds 3(a-b) were characterized by spectroscopic analysis.

The derivatives 4-19 were synthesized by using 2-hydrazinyl-1,3-benzoxazole 3(a-b). using different benzoic acids with in POCl₃ to forms benxoxazole fused triazole derivatives. The formation of target molecules confirmed by IR, ¹H NMR, ¹³C NMR, mass, and elemental analysis. IR spectrum shows strong absorbance peak at 3006.16 cm⁻¹ (Ar C-H str); at 1485.35 (Ar C-C str in ring) groups and ¹H NMR spectrum exhibits peak δ 6.80-7.88(m, 8H, Ar-H) protons, which confirms the cyclization of 2-hydrazino benzoxazoles with acid groups and

RIPBCS 8(4) 2017 **Page No. 838**

forms cyclized triazole ring. The Mass spectra's are concurrence with Molecular weights of the target compounds.

The derivatives 4-19 have been screened for in vitro cytotoxic, antibacterial and antioxidant activity. For selected compounds minimum inhibition concentration was carried out. The selected compound were evaluated for their cytotoxic effect on PBMCs cell lines (Table-1 and Figure-1), to examine their anticancer potentiality. The activity of the tested compounds was influenced considerably by the nature of functional group. Compound 5, 6, 7, 10, 13, 14, 16, 18 and 19 were found more than 70 percent of dead cell viability in three different concentrations (10 µg/mL, 50 µg/mL and 100 µg/mL) against PBMCs cell lines. It was found that amino and nitro substituent did not show upright cytotoxic activity, whereas difloro, pyridine, hydroxyl, furan and methane diamine benzoic acid derivatives exhibited effective activity irrespective of concentration. The antibacterial study, maximum compounds have showed potent zone of inhibition (Table-2 and Figure-2). In the synthesized compounds, marked zone of inhibition of bacteria was observed by the compounds 4, 5, 8, 9, 11, 13, 14, 16, 17 and 19 while moderate activity was observed in compounds 6, 7, 10, 12, 15 and 18 with comparison of standard drug Chloramphenicol. Some of selected Compounds exhibited potent antibacterial activity were evaluated for their minimum inhibition concentration (Table-3) to determine their distinct zone of inhibition of bacteria at varied minimum concentration. Compounds 4, 5, 8, 9, 11, 13, 14, 16 and 19 were found fine zone of inhibition in four different concentrations (25µg/mL, 50µg/mL, 75 µg/mL and 100 µg/mL) against gram positive and gram negative bacteria. It was found that benoxazole fused triazole derivatives showed marked zone of inhibition with observation of effective microbial activity results. The antioxidant activity was done with effective free radical scavenging method (Table-4 and Figure-3). The compounds 4, 5, 8, 9, 11, 12, 13, 14, 16, 17 and 19 were possess excellent antioxidant activity compared with Ascorbic acid as standard.

Table-1 Cytotoxic activity of newly synthesized triazole derivatives against PBMCs.

Sample	Total cells	Live cells	Dead cells	% of Cells viability	%of cells non viability
5-10μg/mL	82	32	50	39.02	60.97
5-50μg/mL	212	60	142	28.3	66.98
5-100μg/mL	136	38	98	27.94	72.05
6-10μg/mL	90	42	48	46.66	53.33
6-50μg/mL	125	27	98	21.60	78.40
6-100μg/mL	92	68	24	73.91	26.08
7-10μg/mL	78	29	49	37.1	62.8
7-50μg/mL	82	38	44	46.3	53.7
7-100μg/mL	186	46	140	24.73	75.26
10-10μg/mL	153	45	108	29.41	70.59
10-50μg/mL	136	48	88	35.3	64.7
10100μg/mL	95	43	52	45.35	54.75
13-10μg/mL	162	42	120	25.92	74
13-50μg/mL	188	84	104	44.68	55.32
13-100μg/mL	88	45	43	51.13	48.86
14-10μg/mL	171	63	108	36.8	63.2
14-50μg/mL	163	48	115	29.4	70.6
14-100μg/mL	96	57	39	59.38	40.62
16-10μg/mL	119	48	71	40.33	59.66
16-50μg/mL	154	61	93	39.6	60.4
16-100μg/mL	136	40	96	29.4	70.6
18-10μg/mL	124	51	73	41.1	59
18-50μg/mL	199	57	142	28.64	71.35
18-100μg/mL	78	42	36	53.85	46.15
19-10μg/mL	184	41	143	23.2	77.8
19-50μg/mL	93	54	39	58.06	41.93
19-100μg/mL	129	58	71	44.97	55.03
Control	118	17	101	14.4	85.5

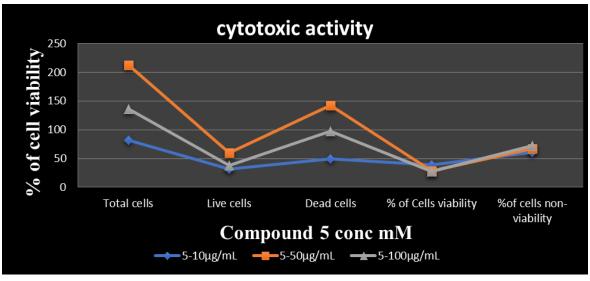
Table-2 Antibacterial activity of compounds 4-19

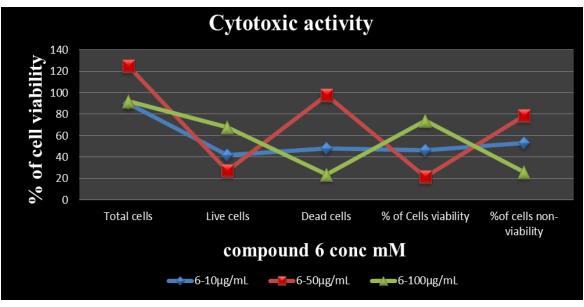
Compound	Zone of inhibition in mm								
S	(Gram positive bac	teria	Gram negative bacteria					
	Saureus	B.subtilis	S.epidermis	V.cholerae	S.typhi	E.coli			
4	20.02±0.26	22.09±0.88	23.09±0.34	24.99±0.98	22.02±0.11	20.09±0.23			
5	21.03±0.22	24.00±0.87	23.01±0.22	26.98±1.91	25.21±4.56	22.32±0.65			
6	22.98±0.32	23.02±9.98	24.89±0.22	26.01±0.33	26.99±0.29	23.78±0.36			
7	19.98±1.23	25.98±0.47	22.09±2.22	23.78±9.01	22.09±11	32.32±3.09			
8	20.09±11	21.78±0.87	20.89±0.45	22.93±0.43	23.01±2.09	22.09±2.54			
9	18.09±0.34	19.89±2.09	20.34±0.15	22.08±3.56	21.07±2.22	19.09±4.56			
10	22.37±7.90	23.20±2.98	22.89±0.46	25.03±3.09	25.09±1.34	20.09±1.08			
11	19.78±0.88	20.45±0.22	23.98±0.43	21.09±0.23	22.98±1.67	20.38±0.77			
12	21.77±0.35	20.67±0.29	19.98±0.88	22.99±0.66	20.09±0.54	21.09±0.54			
13	25.67±0.33	23.09±0.26	23.90±1.11	26.09±0.34	25.85±0.33	24.93±0.32			
14	24.98±0.22	22.90±0.26	26.90±0.33	25.90±0.22	24.89±2.98	23.48±0.39			
15	21.67±2.09	22.44±0.33	20.77±0.43	23.09±0.25	21.98±9.89	22.09±2.23			
16	23.56±8.09	24.98±0.83	23.89±2.09	22.33±0.29	24.77±0.37	25.90±1.98			
17	20.89±0.56	23.98±2.90	22.44±0.32	23.09±0.21	20.89±2.22	24.98±0.25			
18	21.68±20	25.88±0.22	26.09±0.33	25.03±1.09	24.98±0.65	23.07±0.43			
19	20.89±0.21	25.09±0.45	22.98±0.43	24.09±0.99	26.04±0.33	21.93±0.44			
Std	28.99±0.1	29.78±0.43	28.92±0.56	30.09±0.98	29.00±0.22	28.93±0.99			

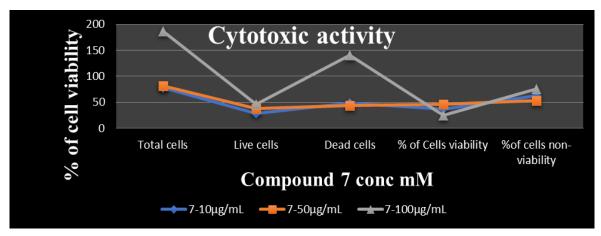
Std: Chorophinocol Solvent: DMSO

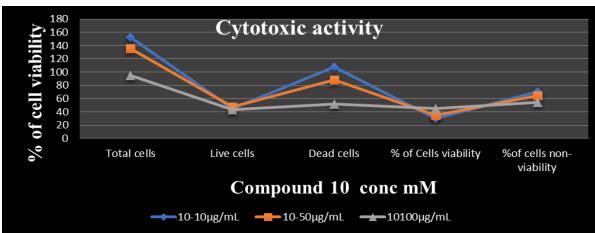
Table-3 Minimum inhibition concentration of selected compounds

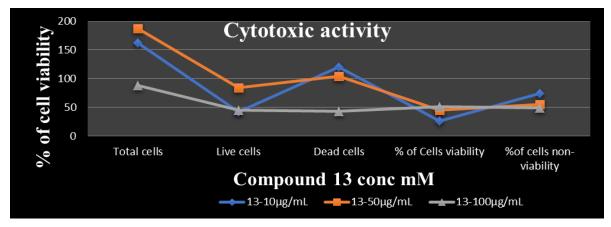
Std: Chorophinocol

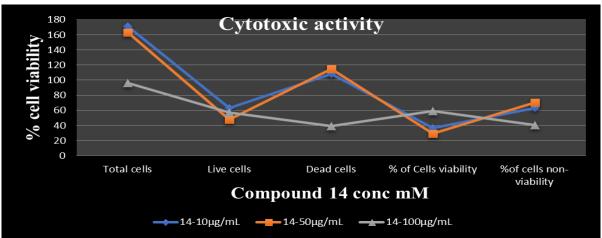

	Bacterial	Conc	Compounds and its zone of inhibition in mm										
	strains		4	5	8	9	11	13	14	16	17	19	
	S. aureus	25	19	20	18	16	18	17	17	16	21	18	29
		50	20	21	20	16	17	19	18	17	21	18	
ia		75	22	23	22	18	18	21	19	17	19	20	
ter		100	24	25	23	19	19	23	20	19	24	21	
Gram positive bacteria	B.cereus	25	19	19	17	19	20	16	19	19	17	17	30
ive		50	20	20	19	20	21	18	21	20	18	19	
sit		75	23	21	21	22	23	19	23	21	19	21	
ρdι		100	22	23	22	23	25	20	25	22	20	22	
ran	S.epidermis	25	18	18	16	17	16	15	14	16	15	19	29
9		50	19	19	17	19	18	16	16	19	17	21	
		75	21	20	20	18	19	18	17	19	18	23	
		100	21	22	19	18	21	19	19	20	19	25	
	V. cholerae	25	16	21	20	18	16	20	16	19	19	18	28
		50	17	23	22	20	19	22	16	20	20	19	
ia		75	17	23	23	22	19	25	18	22	20	20	
ter		100	19	25	25	23	20	26	19	24	25	21	
рас	S.typhi	25	19	20	19	19	19	21	18	21	19	18	29
Ne		50	20	23	22	20	20	23	20	22	20	19	
jati		75	21	26	24	20	21	25	22	23	20	21	
neg		100	23	24	26	25	23	26	23	25	22	22	
Gram negative bacteria	E.coli	25	16	21	14	16	18	18	17	16	17	18	28
Gra		50	19	22	15	18	19	19	17	18	19	19	
		75	19	23	18	20	20	21	19	18	19	19	
		100	20	25	19	19	21	24	21	20	21	22	

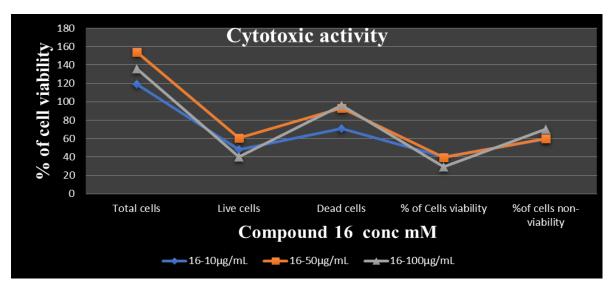

Solvent: DMSO

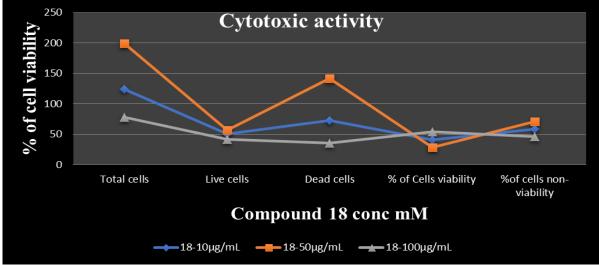

Table-4 Antioxidant activity of synthesized compound 4-19


Compounds	Scavenging activity of different concentration (Mg/mL) in %								
	5	10	15	20	25				
4	62.20	64.59	68.19	70.42	73.71				
5	82.16	85.10	86.63	88.78	89.48				
6	50.92	56.18	61.73	63.12	68.15				
7	53.67	58.30	61.71	64.38	69.09				
8	74.64	77.56	79.18	81.38	84.87				
9	78.25	80.43	83.71	86.45	88.53				
10	48.18	50.56	53.74	58.46	61.89				
11	76.56	79.67	81.12	83.63	85.10				
12	73.47	78.16	81.61	83.42	86.53				
13	81.19	83.38	85.95	88.72	90.43				
14	72.02	75.36	78.41	80.63	82.25				
15	50.81	53.00	54.40	58.78	62.38				
16	75.74	78.68	81.15	84.62	86.73				
17	77.92	79.54	82.33	85.16	89.43				
18	53.67	58.30	61.71	64.38	69.09				
19	78.95	80.53	83.56	85.79	89.12				
Ascorbic acid	86.71	88.57	90.04	93.62	96.33				









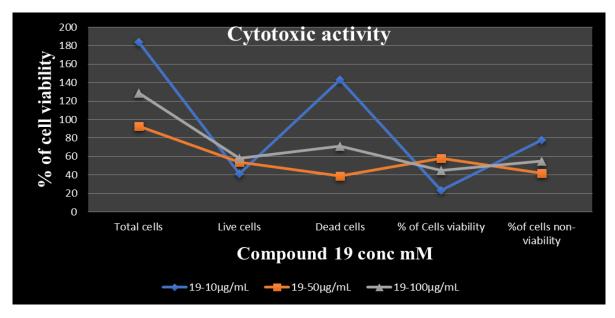


Figure-1. Cytotoxic effect of selected compounds at varying concentrations (10μg/mL, 50μg/mL and 100μg/mL) against Peripheral Blood Mononuclear Cells. Dose-response effect of each synthesized compounds showed in graphical representation.

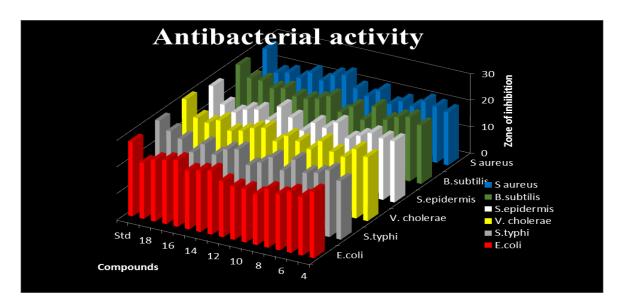


Figure-2 Antibacterial activity of compounds 4-19

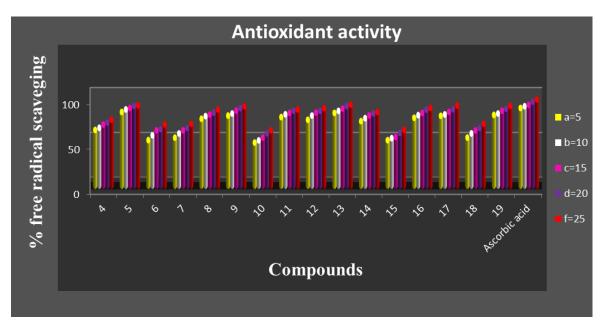


Figure-3 antioxidant activity of synthesized compound 4-19

Scheme 1: Synthetic route for the preparation of compound 4-19

		1		ı			
Com p	R	R ¹	R ²	Comp	R	R^1	R ²
3a	Cl	Н	-	3b	Н	NO ₂	-
4	CI	Н	COOH NH ₂	12	Ħ	NO ₂	COOH NH ₂
5	CI	Н	COOH	13	Н	NO ₂	COOH
6	Cl	Н	HOOC	14	Н	NO ₂	HOOC
7	CI	Н	HOOC	15	Н	NO ₂	HOOC
8	CI	Н	NH ₂	16	Н	NO ₂	NH ₂
9	CI	Н	HOOC NO ₂	17	Н	NO ₂	HOOC NO ₂
10	Cl	Н	HOOC	18	Н	NO ₂	HOOC
11	CI	Н	ОН	19	Н	NO ₂	ОН

Biological activity of the synthesized compounds 4-19

Cytotoxic activity

Preparation of Peripheral Blood Mononuclear Cells (PBMCs) or Buffy Coat

Blood samples from healthy volunteers were collected by venipuncture and transferred into 2 ml heparin coated vacutainers. It was diluted to 1:1 ratio with PBS (Phosphate buffer solution, pH 7.0) layered onto 4 mL Ficol without getting mixed up. It was further separated by centrifuging at 1,000 rpm for 30 min at room temperature. During the centrifugation the PBMCs move from plasma and suspend as the density gradient. Plasma was removed down to 1 cm above buffy coat and discarded the white layer lying on top of the red cells. The buffy coat layer was washed twice with PBS. Roswell Park Memorial Institute (Gibco, Life

Technologies) medium was prepared by mixing 10 mL of Fetal bovine serum (Invitrogen) and 200µL antimycotic [Antibiotic antimycotic solution with Streptomycin (10mg/20mL), 10,000 U Penicillin, Amphotericin B and 0.9% normal saline]. This mixture (4mL) was dispensed into falcon tubes, 30µL of Phytohemagglutin (Invitrogen) and 200μL of PBMCs were incubated at the atmosphere of 95% air and 5% CO₂ at 37°C for 4 hr [27].

About 10 µg/mL, 50 µg/mL and 100 µg/mL of the selected compounds (1mg/mL) were added to the respectively labeled PBMCs tubes and incubated for 72 hr at the earlier mentioned conditions. After 72 hr, cell viability was determined by the trypan-blue dye exclusion method [28].

Trypan blue exclusion test cells were clarified by centrifuging at 1000 rpm for 30 min at room temperature. The supernatant liquid was discarded and to the solution 10µL of PBMCs, 10µL of tryphan blue was added and incubated for 10 min at room temperature. About $10\mu L$ of incubated sample was loaded on previously cleaned Haemocytometer and counted the number of live cells, total cells and dead cells at four corners under Trinucular microscope, Nikon Eclipse E200. The percentage of cell viability and non-viability was tabulated in Table-1. The graphical representation was presented in figure-1.

Antibacterial Activity

The newly synthesized benzoxazole linked triazole derivatives were tested for antibacterial activity against bacterial strains, Escherichia coli (ATTC-8739), Staphylococcus aureus (ATTC-6538), Vibrio cholera (ATTC-9027), Bacillus subtilis (ATTC-6633), Staphylococcus epidermidis (ATTC-12228) and Salmonella typhimurium (ATTC-23564) by agar well diffusion method [29]. The 24 hr old Mueller-Hinton broth culture of test bacteria were swabbed on sterile Mueller-Hint on agar plates using sterile cotton swab followed by punching wells of 6 mm with the help of sterile cork borer. The standard drug (chloramphenicol, 1mg/mL of sterile distilled water), compounds 4-19 (20 mg/mL of 10% DMSO), and control (10% DMSO) were added to the respectively labeled wells. The plates were allowed to stand for 30 minutes and were incubated at 37°C for 24 hr in upright position and the zone of inhibition was recorded and tabulated in Table-2 and graphically represented in figure-2.

Minimum Inhibitory Concentration (MIC).

The MIC of the selected compounds 4, 5, 8, 9, 11, 13, 14, 16, 17 and 19 was determined by micro dilution method [30]. The respective clinical strain was spread separately on the medium. The wells were created using a stainless steel sterilized cork borer under aseptic conditions. The synthesized compounds at different concentrations (25, 50, 75 and 100 μ g/mL), were loaded into corresponding wells. The drugs Chloramphenicol were used as standard for the comparison of antibacterial activities, respectively. The results were recorded in mm and presented in Table-3.

Antioxidant activity synthesized compounds 4-19

DPPH Assay.

The radical scavenging ability of synthesized compounds and the ascorbic acid (standard) was tested on the basis of radical scavenging effect on a DPPH free radical. Different concentrations (25, 50, 75 and $100\mu g/mL$) of compounds and standard were prepared in methanol. In clean and labeled test tubes, 3 mL of DPPH solution (0.002% in methanol) was mixed with 00, 05, 10, 15, 20 and 25 μ g/mL concentrations of compounds and standard separately and make up the solution up to 4 mL by adding methanol. The tubes were incubated at room temperature in dark for 30 minutes, and the optical density was measured at 517 nm using UV-Visible Spectrophotometer. The absorbance of the DPPH control was also noted. The scavenging activity was calculated using the formula. Scavenging activity (%) = $A - B/A \times 100$, where A is the absorbance of DPPH and *B* is the absorbance of DPPH in standard combination [31].

RIPBCS **Page No. 846** 2017 8(4)

CONCLUSIONS

A series of benzoxazole with triazole derivatives were synthesized by the cyclization of substituted 2-hydrazinyl-1,3-benzoxazole **3(a-b)** with various benzoic acids. The newly synthesized molecules were characterized by IR, ¹H NMR and mass spectral analysis. For all the compounds, the in vitro cytotoxic, antibacterial, minimum inhibition concentration and antioxidant activity studies were evaluated. The cytotoxic activity against Peripheral Blood Mononuclear Cells were tested by selected benzoxazole derivatives. The compounds **5**, **6**, **7**, **10**, **13**, **14**, **16**, **18** and **19** were exhibited effective anticancer activity against PBMCs. Among the synthesized benzoxazole with triazole derivatives. Compounds **4**, **5**, **8**, **9**, **11**, **13**, **14**, **16**, **17** and **19** were emerged as potent antibacterial compounds, which were supported by MIC. The synthesized compounds were familiarized for free radical scavenging, in which the compounds **4**, **5**, **8**, **9**, **11**, **12**, **13**, **14**, **16**, **17** and **19** showed good free radical scavenging activity.

ACKNOWLEDGMENTS

The authors are grateful to the Principal, Sahyadri Science College, Shivamogga, for laboratory facilities to carry out research work. The authors are also thankful to MIT, Manipal and IIT Bombay for providing ¹H NMR and ¹³C NMR spectral facilities. We are also thankful to the Department of Microbiology and Cell Biology IISc Bangalore, India and Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research, Tamaka-563103, Kolar, Karnataka, India for their support in carrying out cytotoxic activity.

REFERENCES

- [1] Livermore DM. Int J Antimicrob Agents 2000; 16: 3-10.
- [2] Alanis JA. Arch Med Res 2005; 36: 697-705.
- [3] Tang JJX, Dou W, Zhang H, Liu W, Wang C, Zheng J. J Inorg Biochem 2010; 104: 583-591.
- [4] Kamal A, Reddy KS, Naseer M, Khan A, Rajesh VC, Shetti C, Ramaiah MJ. Bioorg & Med Chem Let 2010: 18: 4747-4761.
- [5] Jayanna ND, Vagdevi HM, Dharshan JC, Raghavendra R, Telkar SB. Med Chem Res 2013; 22: 5814-5822.
- [6] Rida SM, Ashour FA, Soad AM, Hawash E, Mona M, Semary E. Eur J Med Chem 2005; 40: 949-959.
- [7] Satyendra RV, Vishnumurthy KA, Vagdevi HM, Rajesh KP, Manjunatha H, Shruthi A. Eur J Med Chem 2011; 46: 3078-3084.
- [8] Paramashivappa R, Kumar PP, Rao PVS, Rao AS. Bioorg & Med Chem Let 2003: 13; 657-660.
- [9] Ramalingan C, Balasubramanian S, Kabilan S, Vasudevan M. Eur J Med Chem 2004; 39: 527-533.
- [10] Klimesova V, Koc J, Waisser K, Kaustova J, Mollmann U. Eur J Med Chem 2009; 44: 2286-2293.
- [11] Yang Z, Fairfax DJ, Maeng JH, et al. Bioorg & Med Chem Let 2010; 20: 6538-6541.
- [12] Sham M, et al. Bioorg & Med Chem Let 2006; 14: 3758-3765.
- [13] Song H, Oh SR, Lee HK, et al. Bioorg & Med Chem Let 2010; 18: 7580-7585.
- [14] Sun LQ, Chen J, Bruce M, Deskus JA, et al. Bioorg & MedChem Let 2004; 14: 3799-3802.
- [15] Bayrak H, Demirbas A, Demirbas N, Alpay-Karaoglu S. Eur J Med Chem 2009; 44: 4362-4366.
- [16] Sharma S, Gangal S, Rauf A, Zahin M. Arc Pharm Chem Life Sci 2008; 341: 714-720.
- [17] K" u,c" ukg"uzell, K"u,c" ukg"uzel SG, Rollas S, Kiraz M. Bioorg & Med Chem Let 2001; 11: 1703-1707.
- [18] Turan-Zitouni G, Sivaci M, Kilic KFS, Erol. Eur J Med Chem 2001; 36: 685-689.
- [19] Tozkoparan B, Ye upeli EK, silada E, Ertan M. Bioorg & Med Chem 2007; 15: 1808-1814.
- [20] Holla BS, Veerendra B, Shivananda MK, Poojary. Eur J Med Chem 2003; 38: 759-767.
- [21] Almasirad ASA, Tabatabai M, Faizi A, Kebriaeezadeh N, Mehrabi A, Dalvandi A, Shafiee A. Bioorg & Med Chem Lett 2004; 14: 6057-6059.
- [22] Kritsanida M, Mouroutsou A, Marakos P, Pouli N, Papakonstantinou- Garoufalias S, Pannecouque C, Witvrouw M, DeClercq E. IlFarmaco 2002; 57: 253-257.
- [23] Chai B, Qian X, Cao S, Liu H, Song G. Arkivoc 2003; 1: 141-145.
- [24] Varvaresou A, Tsotinis TA, Tsantili-Kakoulidou A, Vamvakides A. IIFarmaco 1998: 53: 320-326.
- [25] Jayanna ND, Vagdevi HM, Dharshan JC, PrashithKekuda TR.In J Chem Scie 2012; 10(3):1529-1540.
- [26] Robert C, Lu X, Law A,Freeman TC, Hume DA. Immunobiology 2011; 216(11): 1203-1209
- [27] Strober W. CurrProtocImmunol 2013. Appendix, Appendix 3B, doi:10.1002/0471142735.ima03bs21.

[28] Jayanna ND, Vagdevi HM, Dharshan JC, PrashithKekuda TR, Hanumanthappa BC, Gowdarshivannanavar BC. J of Chem 2013; 1: 2013.

- [29] Jauhari PK, Bhavani A, Varalwar S, Singhal K, Raj P. Med Chem Res 2008; 17: 412–424.
- [30] Satyendra RV, Vishnumurthy KA, Vagdevi HM, Rajesh KP, Manjunatha H, Shruthi A. Eur J of Med Chem 2011; **7**: 3078–3084.