CLINICO-AETIOLOGICAL STUDY OF FOOT INTERTRIGO IN A TERTIARY CARE CENTRE

By DR. PRAKRUTHI K N, MBBS,

Dissertation submitted to

Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka

DOCTOR OF MEDICINE
IN
DERMATOLOGY, VENEREOLOGY AND LEPROSY

Under the guidance of

DR. T S RAJASHEKHAR, M.D.,

DEPARTMENT OF DERMATOLOGY, VENEREOLOGY AND LEPROSY,
SRI DEVARAJ URS MEDICAL COLLEGE, KOLAR
April 2015

DECLARATION BY THE CANDIDATE

I hereby declare that this dissertation entitled "CLINICO-

AETIOLOGICAL STUDY OF FOOT INTERTRIGO IN A

TERTIARY CARE CENTRE" is a bonafide and genuine research

work carried out by me under the direct guidance of Dr.

RAJASHEKAR T S, Professor and H.O.D, Department of

Dermatology, Venereology and Leprosy, Sri Devaraj Urs Medical

College, Tamaka, Kolar.

Date:

Signature of the candidate

Place: Kolar

Dr. PRAKRUTHI K N

ii

CERTIFICATE BY THE GUIDE

This is to certify that the dissertation entitled "CLINICO-AETIOLOGICAL STUDY OF FOOT INTERTRIGO IN A TERTIARY CARE CENTRE" is a bonafide research work done by Dr. PRAKRUTHI K N in partial fulfillment of the requirement for the degree of M.D IN DERMATOLOGY, VENEREOLOGY, LEPROSY.

Signature of Guide

Date: Dr. RAJASHEKHAR T S, MD.,

Place: Kolar Professor and Head

Department of Dermatology,

Venereology and Leprosy

Sri Devaraj Urs Medical College

iii

CERTIFICATE BY THE CO-GUIDE

This is to certify that the dissertation entitled

"CLINICO-AETIOLOGICAL STUDY OF FOOT INTERTRIGO IN A

TERTIARY CARE CENTRE" is a bonafide research work done by

Dr. PRAKRUTHI K N in partial fulfillment of the requirement for

the degree of M.D IN DERMATOLOGY, VENEREOLOGY AND

LEPROSY.

Signature of Co-Guide

Date:

Place: Kolar

DR. BEENA P M. MD,

Professor and Head,

Department of Microbiology

Sri Devaraj Urs Medical College

iv

ENDORSEMENT BY THE HOD, PRINCIPAL/ HEAD OF THE INSTITUTION

This is to certify that the dissertation entitled "CLINICO-AETIOLOGICAL STUDY OF FOOT INTERTRIGO IN A TERTIARY CARE CENTRE" is a bonafide research work done by Dr. PRAKRUTHI K N under the guidance of Dr.RAJASHEKAR T S, MD, Professor, Head of Department of Dermatology, Venereology and Leprosy.

DR. RAJASHEKAR T.S, M.D.,

Professor & HOD

Department of Dermatology,

Venereology and Leprosy,

Sri Devaraj Urs Medical College,

Tamaka, Kolar.

DR M.B. SANIKOP, MS

Principal,

Sri Devaraj Urs Medical College,

Tamaka, Kolar.

COPYRIGHT

DECLARATION BY THE CANDIDATE

I hereby declare that the Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, Karnataka, shall have the rights to preserve, use and disseminate this dissertation in print or electronic format for academic / research purpose.

Date: SIGNATURE OF THE CANDIDATE

Place: Kolar Dr. PRAKRUTHI K N

© Sri Devaraj Urs Academy of Higher Education And Research, Tamaka, Kolar, Karnataka.

SRI DEVARAJ URS MEDICAL COLLEGE, TAMAKA, KOLAR.

ETHICS COMMITTEE

CERTIFICATE

This is to certify that, the ethics committee of Sri Devaraj

Urs Medical College, Tamaka, Kolar, has unanimously approved the

dissertation work of Dr. PRAKRUTHI K N, a postgraduate student

in the Department of Dermatology, Venereology and Leprosy of Sri

Devaraj Urs Medical College entitled "CLINICO-AETIOLOGICAL

STUDY OF FOOT INTERTRIGO IN A TERTIARY CARE CENTRE" to be

submitted to Sri Devaraj Urs Academy of Higher Education and

Research, Tamaka, Kolar.

Date:

Place: Kolar

Signature of Member Secretary

Ethical committee

vii

ACKNOWLEDGEMENT

One of the joys of completion of this dissertation is to look over the journey past and remember and thank all the people who have helped and supported me along this long but fulfilling road. First and foremost, I thank the Almighty for giving me the strength and ability to carry out this study.

I am deeply indebted and grateful to my guide **Dr. Rajashekar T S**, MD, Professor and Head, Department of Dermatology, Venereology and Leprosy, Sri Devaraj Urs Medical College, Tamaka, Kolar, for his able guidance, support, timely advice and constant encouragement throughout the period of the study.

I would like to express my sincere gratitude to my co-guide **Dr. Beena P M**, MD,

Professor and Head, Department of Microbiology, Sri Devaraj Urs Medical College, for her constant help, expert advice and support during the course of this study.

I am thankful to **Dr. Raghavendra B N**, MD, Associate professor Department of Dermatology, Venereology and Leprosy, for his helpful guidance during my postgraduate career.

I thank **Dr. Rajesh G**, MD, and **Dr. Satish S**, MD, Department of Dermatology, Venereology and Leprosy, for their constant encouragement and support.

I convey my special thanks to my teachers **Dr. Rajendra Okade** MD, DNB and **Dr. Shivakumar V**, MD, DNB for helping me choose this dissertation in the first place and making this happen. I also thank them for guiding me through my first baby steps, in my career of Dermatology.

I thank my best friend and dear husband **Dr. Karthik S M** for his unending faith,

unconditional love and support throughout this endeavor. I am extremely grateful for all

his time, help, tireless effort in preparing this dissertation without which, it would not

have been possible for me to complete this dissertation.

No words can express the deepest gratitude I feel towards my beloved parents, Late Dr.

Narayana Reddy and Mrs. Padmavathy V, whose countless sacrifices and cherished

blessings have made me who I am today in my life.

I also thank my dear brother Mr. Chinmaya swaroop N and my sister in law Mrs.

Soumyasree Reddy for being a constant source of strength, encouragement, and never

ending support.

I also thank my in-laws **Dr. Mahalingeshwara M S** and **Mrs. Nagarathna C A**, for their

love, concern, and support.

I am also thankful to my postgraduate colleague, **Dr. Ann Mary Jose**, my seniors and

dear juniors for their constant motivation and co-operation.

Last but not the least, I thank all my patients involved in this study, without whose co-

operation, this study would not have been possible.

Date:

Signature of the Candidate

Place: Kolar.

Dr. Prakruthi K N

ix

LIST OF ABBREVIATIONS USED

CD Contact Dermatitis

CICD Cumulative Irritant Contact Dermatitis

CoNS Coagulase Negative Staphylococcus

FI Foot Intertrigo

GABHS Group-A Beta- Hemolytic Streptococcus

GNB Gram Negative Bacilli

GPC Gram Positive Cocci

HKD Hyper Keratotic Dermatoses

KOH Potassium Hydroxide

LPCB Lacto Phenol Cotton Blue Test

MRSA Methicillin Resistant Staphylococcus aureus

MSSA Methicillin Sensitive Staphylococcus aureus

NDM Non Dermatophytic mould

SDA Sabouraud's Dextrose Agar

TWI Toe Web Infection

ABSTRACT

BACKGROUND: Intertrigo is an inflammatory skin eruption, infectious or non infectious, of two closely opposed skin surfaces caused by friction in conjunction with moisture trapped in deep skin folds. Foot intertrigo, occurring in the toe web spaces, is a relatively common and troubling disorder, especially in hot and humid climate, like in India. The principal etiologic factors in this disorder are mechanical, but chronic bacterial or fungal infection becomes operative, when suitable conditions are present. Clinicians often treat foot intertrigo as purely a fungal infection, overlooking role of predisposing factors and the possibility of added bacterial infection. Also, very few studies have been conducted internationally to evaluate the etiology of interdigital foot intertrigo and even fewer Indian studies addressing the same in Indian population.

AIMS: To evaluate the clinical features and pre-disposing factors of foot intertrigo and to determine the causative organisms of toe web space infections.

MATERIALS AND METHODS: The present study was a hospital based cross sectional study, carried out at Sri R.L.Jalappa Hospital and Research centre, Tamaka, Kolar, from January 2012 to June 2014 over a period of 18 months. All patients reporting to the Department of Dermatology at the above mentioned hospital were evaluated for inclusion into the study and a total of 115 patients having clinically diagnosed foot intertrigo were enrolled into the study. Detailed history including the presenting illness, predisposing factors, systemic diseases, past history and family history were taken. A

complete clinical examination including detailed dermatological examination and relevant investigations were performed. Specimens were collected from the lesions in the affected toe web spaces and subjected for bacteriological and fungal studies.

RESULTS: Majority of the patients with foot intertrigo belonged to the age group of 41 to 50 years (26.1%). Mean age was 44.7± 17. Males were 50.4% and 49.6% were females. It was most commonly seen in housewives (33.9%) followed by agriculturists (19.1%). Onset of the disease was insidious in 77.4% and acute in 22.6%. Majority (61.7%) had the disease for at least more than a year and 27.8% had foot intertrigo for < 6 months. Most common predisposing factors were repeated exposure to wet conditions (49.6%) and occlusive foot wear (19.1%) followed by poor hygiene (11.3%), hyperhidrosis (8.7%), foot deformity (4.3%), and obesity (3.5%). Only 60% were symptomatic and most common symptoms were itching in 36.5%, pain in 20%, burning sensation in 13.9%. Most common morphologic presentation was maceration (72.2%) and scaling (38.2%). Bilateral involvement was seen in 53.9% and unilateral in 46.1%. Most commonly affected toe web space was the 4th toe web space (85.21%), followed by the 3rd toe web space. Diabetes mellitus was the most common associated disease noted in 24.3%, followed by concomitant fungal infection at other body areas seen in 21.7%. Cellulitis was seen in 4.3%. Fungal elements were seen in 25 (21.7%) cases, on KOH mount. Fungal culture showed growth in 16 (13.91%) cases of which Candida albicans was isolated in 8 cases, Aspergillus niger in 4 cases and Candida tropicalis, Microsporum nanum, Aspergillus flavus and Fusarium species were isolated in 1 sample each. Bacterial culture was positive in 100 cases. Skin commensals like Micrococci and CoNS

constituted 35 cases (30.43%). Gram positive bacterial pathogens were isolated in 26.9% and Gram negative in 50.4% cases. Most commonly isolated organism was MSSA in 24 cases (24.3%), P.aeruginosa in 14 cases (12.2%), Acinetobacter in 12 (10.4%). In total of 34 mixed infections, Gram negative with Gram negative infection constituted 13 cases of mixed infections. Gram positive with Gram positive infection was seen only in 1 case. Incidence of fungal with Gram positive was seen in 8 cases and Fungal with gram negative bacteria seen in 9 cases.

Most common type of Intertrigo was mixed toe web intertrigo seen in 34 cases (29.6%), followed by single organism bacterial intertrigo in 32 cases (27.82%). Simple intertrigo was seen in 29 cases (25.2%), isolated fungal infection was seen in 8 cases (7%), contact dermatitis was seen in 6 cases (5.2%). Miscellaneous causes of intertrigo (5.2%) included 3 cases of soft corn, 2 cases of palmo-plantar psoriasis, 1 case of scabies.

CONCLUSION: Aetiology of foot intertrigo is variable and it occurs due to a complex interplay between various local predisposing factors, host factors, bacterial and fungal organisms. It can be simple intertrigo where only mechanical and physical factors play a role or it may be primarily or secondarily infected by various bacterial and fungal pathogens resulting in mixed toe web infections. Also clinical manifestations can be similar in majority of the cases with maceration being the most common presentation, hence, diagnosis cannot be made based only on clinical features, making appropriate microbiological studies imperative.

Keyword: Foot intertrigo, toe web infection, tinea pedis, Gram negative toe web infection

TABLE OF CONTENTS

SL. NO.	PARTICULARS	PAGE NO.
1.	INTRODUCTION	1
2.	AIMS AND OBJECTIVES	4
3.	REVIEW OF LITERATURE	6
4.	MATERIALS AND METHODS	54
5.	OBSERVATION AND RESULTS	60
6.	DISCUSSION	95
7.	CONCLUSION	105
8.	SUMMARY	108
9.	BIBLIOGRAPHY	112
10.	ANNEXURES	122

TABLES

Table	Topic	Page
No.		Number
1	Infective organisms playing role in intertrigo	13
2	Normal skin flora	31
3	Intertrigo and treatment	53
4	Age distribution of subjects with foot intertrigo	61
5	Sex distribution of subjects with foot intertrigo	62
6	Distribution of subjects with foot intertrigo based on occupation	63
7	Onset of foot intertrigo	64
8	Duration of disease in foot intertrigo subjects	65
9	Number of predisposing factors among subjects	66
10	Predisposing factors among subjects	67
11	Distribution of associated conditions among subjects	68
12	Number of symptoms in foot intertrigo subjects	69
13	Presenting complaints in foot intertrigo subjects	70
14	Primary lesions among the subjects	71
15	Foot intertrigo – clinical presentation	72
16	Color of the lesions among the subjects	73
17	Foot intertrigo – sites of involvement	74
18	Foot intertrigo: number of toe web spaces involved	75
19	Foot intertrigo- KOH findings	75

20	Foot intertrigo- growth on fungal culture	76
21	Gram staining findings among subjects	77
22	Foot intertrigo- growth on bacterial culture	78
23	Bacterial pathogens isolated in culture	79
24	Foot intertrigo- mixed infections	81
25	Final diagnosis in patients of foot intertrigo	82

FIGURES

SI No.	Figures	Pg. No.
1	Intertriginous areas	15
2	Severe gram-negative toe web infection showing denudation,	45
	discharge and greenish discolouration.	
3	Erosio interdigitalis blastomycetica	45
4	Soft Corn Located Deep Within The 4 th Interdigital Space	46
5	Tinea pedis- interdigital type showing maceration, scales and erosion.	46
6	Approach to case of foot intertrigo	59
7	Bar diagram showing age distribution of subjects with foot intertrigo	61
8	Sex distribution of subjects with foot intertrigo	62
9	Bar diagram showing distribution of subjects with foot intertrigo based on occupation	63
10	Pie diagram showing onset of foot intertrigo	64
11	Bar diagram showing duration of disease in subjects of foot intertrigo	65
12	Pie diagram showing number of predisposing factors in subjects of foot intertrigo	66
13	Bar diagram showing distribution of predisposing factors in foot intertrigo	67

intertrigo subjects 15 Bar diagram showing primary lesions among the subjects 7 16 Distribution of clinical presentation in foot intertrigo 7 17 Bar diagram showing color of the lesions in foot intertrigo 7 18 Foot intertrigo- sites of involvement 7 19 Foot intertrigo – growth on fungal culture. 7 10 Bar diagram showing gram staining findings 7 10 Bar diagram showing gram staining findings 7 10 Bar diagram showing gram staining findings 7 10 Bar diagram showing final diagnosis in patients with foot intertrigo 2 1 Foot intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions 8 2 2 And Maceration 2 3 Foot Intertrigo Of 3 rd And 4 th Toe Web Space Showing White Maceration 2 4 Toe Web Intertrigo Of 4 th Toe Web Infection Showing Maceration 2 5 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration 2 6 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection			
15 Bar diagram showing primary lesions among the subjects 7 16 Distribution of clinical presentation in foot intertrigo 7 17 Bar diagram showing color of the lesions in foot intertrigo 7 18 Foot intertrigo- sites of involvement 7 19 Foot intertrigo – growth on fungal culture. 7 20 Bar diagram showing gram staining findings 7 21 Foot intertrigo growth on bacterial culture 8 22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	14		70
16 Distribution of clinical presentation in foot intertrigo 17 Bar diagram showing color of the lesions in foot intertrigo 18 Foot intertrigo- sites of involvement 19 Foot intertrigo – growth on fungal culture. 20 Bar diagram showing gram staining findings 21 Foot intertrigo growth on bacterial culture 22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions 24 And Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration 27 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection			
17 Bar diagram showing color of the lesions in foot intertrigo 18 Foot intertrigo- sites of involvement 19 Foot intertrigo – growth on fungal culture. 20 Bar diagram showing gram staining findings 21 Foot intertrigo growth on bacterial culture 22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions 24 And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	15	Bar diagram showing primary lesions among the subjects	71
18 Foot intertrigo- sites of involvement 19 Foot intertrigo – growth on fungal culture. 20 Bar diagram showing gram staining findings 21 Foot intertrigo growth on bacterial culture 22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	16	Distribution of clinical presentation in foot intertrigo	72
19 Foot intertrigo – growth on fungal culture. 20 Bar diagram showing gram staining findings 21 Foot intertrigo growth on bacterial culture 22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	17	Bar diagram showing color of the lesions in foot intertrigo	73
20 Bar diagram showing gram staining findings 21 Foot intertrigo growth on bacterial culture 22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	18	Foot intertrigo- sites of involvement	74
21 Foot intertrigo growth on bacterial culture 22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	19	Foot intertrigo – growth on fungal culture.	76
22 Bar diagram showing final diagnosis in patients with foot intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	20	Bar diagram showing gram staining findings	77
intertrigo 23 Foot Intertrigo Of 3 rd And 4 th Toe Web Spaces With Erosions And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	21	Foot intertrigo growth on bacterial culture	80
And Maceration 24 Toe Web Intertrigo Of 3 rd Toe Web Space Showing White Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	22		82
Maceration 25 Foot Intertrigo Of 4 th Toe Web Infection Showing Maceration And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	23		83
And Greenish Discolouration 26 Foot Intertrigo Of 4 th Toe Web Space Showing Maceration And Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	24		83
Greenish Discolouration Due To Pseudomonas Aeruginosa Infection	25		84
27 Foot Intertrigo Of 4 th Toe Web Space Extending To Plantar 8:	26	Greenish Discolouration Due To Pseudomonas Aeruginosa	84
	27	Foot Intertrigo Of 4 th Toe Web Space Extending To Plantar	85

	Surface	
28	Toe web intertrigo with crusting involving the digitoplantar sulcus	85
29	Toe Web Intertrigo Affecting The 3 rd And 4 th Toe Web Spaces In A Case Of Hansens And Trophic Ulcer	86
30	Foot intertrigo affecting all 4 toe web spaces with involvement of digitoplantar sulcus	86
31	Bilateral foot intertrigo affecting all web spaces with fissuring	87
32	3 rd And 4 th Web Intertrigo With Pitted Keratolysis	87
33	A Case Of Diabetic Bullae With Maceration, Erosion And Discharge Affecting 4 th Toe Web Space	88
34	Toe Web Infection Of The 1 st Toe Web Space With Purulent Discharge	88
35	Interdigital tinea pedis showing scaling of the 4th toe web space.	89
36	Case of tinea pedis with extension of scaling to plantar aspect of foot KOH showed hyphae in this case	89
37	Concomitant tinea corporis in the same patient.	89
38	GPC in clusters on Grams stain	90
39	Staphylococcus aureus growth on blood agar	90
40	GNB on grams stain	90
41	Growth of Pseudomonas aeruginosa on MacConkey agar	90
42	Growth of Microscopurm nanum on SDA	91

43	Microscopic picture of Microsporum nanum on LPCB mount	91
44	Growth of fusarium on SDA	92
45	Growth of Aspergillus niger on SDA	92
46	Gram positive budding yeast cells on gram stain	93
47	KOH mount showing hyphae	93
48	Growth of Candida tropicalis on SDA	93
49	Growth of Candida albicans on SDA	94
50	Germ tube formation by Candida albicans	94

CLINICO-AETIOLOGICAL STUDY OF FOOT INTERTRIGO IN A TERTIARY CARE CENTRE

INTRODUCTION

INTRODUCTION

Intertrigo is an inflammatory skin condition, infectious or non infectious, of two closely opposed skin surfaces that presents as a moist erythematous lesion and scaling.^{1,2} This condition can affect people of all ages and either sex and can be symptomatic or asymptomatic.

The principal etiologic factors in this disorder are mechanical, but chronic bacterial or fungal infection becomes operative when suitable conditions are present. The condition is most commonly seen in groin, axillae, inframammary folds, interdigital areas, intergluteal areas. Foot intertrigo affecting the toe web spaces is a relatively a very common and troubling disorder encountered in tropical climate like in India.³

Obesity, hyperhidrosis, occlusion, poor hygiene, exposure to excessive heat, humidity and moisture and certain immunodeficient conditions like diabetes mellitus, chronic exposure to steroid therapy, malnutrition are some of the predisposing factors for intertrigo. Interdigital toe web intertrigo may be associated with close-toe or tight fitting footwear. 1,4-6

Toe web space provides a hospitable niche for subsequent colonization by several microorganisms. An occlusive environment of the web space can exacerbate a mild dermatophyte infection and favor the overgrowth of resident bacteria. Foot intertrigo is initially caused by dermatophytes and with time, a "complex" may develop in the setting of moisture and maceration that favours the growth of multiple fungal and bacterial organisms.^{3,7,8}

Although foot intertrigo may present as a chronic erythematous desquamative eruption, it is often characterized by malodorous maceration and mainly affects the interdigital regions of the feet. In addition to eczematous dermatitis and interdigital tinea pedis, the aetiologies of foot intertrigo are varied and include candidal intertrigo and bacterial intertrigo. ^{3,7}

Clinicians generally treat foot intertrigo as fungal infection, overlooking the possibility of added bacterial infection. Therapeutic approaches should not concentrate solely on antifungal therapy, but should concentrate on addressing the predisposing factors, preventive measures along with appropriate topical or systemic antibacterial and antifungal agents.

Very few studies have been conducted internationally to evaluate the etiology of interdigital foot intertrigo and even fewer Indian studies addressing the same in Indian population.

The scarcity of studies in Indian population relating to microbial aetiology and predisposing factors of foot intertrigo, have led us to underestimate the relative frequency and importance of this condition.

Hence, clinical and microbiological studies are required to assist in the selection of appropriate treatment and prevention of important complications of foot intertrigo.

AIMS AND OBJECTIVES

AIMS AND OBJECTIVES

- 1. To evaluate the clinical features and pre-disposing factors of foot intertrigo.
- 2. To determine the causative organisms of toe web space infections in foot intertrigo.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

DEFINITION:

Intertrigo, or intertriginous dermatitis, may be defined as superficial inflammatory dermatitis created by friction of opposing skin surfaces in conjunction with moisture trapped in deep skin folds. ^{3,9}

HISTORICAL ASPECTS:

The term intertrigo is derived from the Latin language

Inter = between

Terere = to rub. 10

Intertrigo is also known as "chafing". Reports of superficial yeast infection involving the perineum and upper part of thighs in a negress was made by Engman in early 19th century. The yeasts causing similar infection in axillae, groins, gluteal folds and interdigital spaces of fingers and toes were given the name Intertrigo saccharomycetica. Similar cases were observed in Ceylon, by Castellani, in England by Whitfield, in the Philipine Islands by Phalen and Nichols, and in France by Hudelo where it attacked the intertriginous areas.¹¹

Many therapies have been used for treatment of Intertrigo ranging from herbal pastes to chemical agents. Corbleet in 1929 suggested the use of alcoholic solution of gentian violet for intertrigo. 3% sulphur, Chrysarobin in choloroform and castellani's paint, zinc

7

oxide, emol keleet, boric acid ointment have been advocated for therapy of intertrigo

earlier. 11,12

EPIDEMIOLOGY:

Incidence and prevalence: The true incidence and prevalence of intertrigo in general

population is currently unknown. Prevalence of intertrigo in the large skin folds varies

from 6% in hospital patients to 17% in nursing home clients and 20% in home care

patients.9,13

Internationally, intertrigo is common in tropical weather conditions, hot, humid

environment.

Age: Intertrigo affects people of all age groups, more prevalent in the very young and

elderly likely due to reduced immunity and immobilization.

Sex: Intertrigo has no sex predilection.

Race: Intertrigo has no racial predilection.

Occupation: Interdigital intertrigo is mainly seen in housewives, maids and others who

have constant exposure to water, people working in hot and humid environment and in

athletes who have increased sweating and wear occlusive footwear.

Mortality and Morbidity: Intertrigo can progress to a severe bacterial infection with

pain, mobility problems, erysipelas, cellulitis, abscess formation, fasciitis, and

osteomyelitis. 14

8

ETIOLOGY AND RISK FACTORS:

Skin folds are prone for intertrigo due to following reasons:

- 1. These areas are commonly occluded. Occlusion, perspiration and maceration initiate and exacerbate the inflammatory process.¹⁵
- 2. Skin folds, in particular, groin, axilla and intragluteal regions are major sites of apocrine glands. ¹⁶
- 3. Skin on skin rubbing promotes friction between the surfaces.¹

There are many risk factors associated with intertrigo. Some of them common, and a few other not so common risk factors. Having multiple risk factors, greatly increase the incidence of intertrigo.

Factors that promote friction, moisture and heat in the intertriginous areas are primarily responsible for the intertrigo.

Factors that increase skin friction:

- Obesity
- Clothing that chafes skin
- Activities that promote skin on skin rubbing
- occlusive footwear

Factors that increase moisture:

- Obesity
- Occlusive clothing

- Hyperhidrosis
- Occupational exposure to moisture

Factors that increase heat:

- hyperhidrosis
- occlusive footwear
- Occupational exposure to warm temperatures

Factors which influence immune response or promote fungal growth:

- Diabetes mellitus
- Corticosteroids- topical and systemic
- Immunodeficiency like HIV, Cancer chemotherapy, immunosuppressant medications
- Antibiotics
- Occupational exposure to sugar
- Obesity: There is a linear increase in the severity of obesity and the presence of intertrigo. ¹⁷ Patients who are obese sweat more profusely because of their thick layers of subcutaneous brown fat, generating more heat than persons with normal body mass. ¹⁸ This increases thermal, frictional, and moisture components of the skin. ¹⁷
- 2. Diabetes: Important risk factors for development of diabetic foot infections include neuropathy, peripheral vascular disease, and poor glycemic control. In the

setting of sensory neuropathy, there is diminished perception of pain and temperature thus, many patients are slow to recognize the presence of an injury to their feet. Motor neuropathy can lead to foot deformities, which lead to pressure-induced soft tissue damage. Peripheral artery disease can impair blood flow necessary for healing of ulcers and infections. Hyperglycemia impairs neutrophil function and reduces host defenses.¹⁹

- 3. Hot and humid environment: Sweating and its retention due to lack of ventilation results in creating a favourable environment for growth of fungi and bacteria
- 4. Hyperhidrosis: Heat, moisture and sweat retention combine to cause maceration and irritation, especially where the skin is thin.¹⁵
- 5. Strenuous exercises
- 6. Irritation from sweat, urine, faeces, vaginal discharge.
- 7. Persons who are bedridden or who wear medical devices that might trap moisture against the skin, such as in artificial limb, splint or brace.
- 8. Anatomic peculiarities such as deformed foot, spinal deformities.
- 9. Wearing occlusive footwear predisposes to foot intertrigo.
- 10. People involved in athletic activities, occupational and recreational exposure to moisture. 4

PATHOPHYSIOLOGY:

Intertrigo occurs at sites of skin apposition where friction, moisture, perspiration, maceration, heat, and occlusion induce and exacerbate the inflammatory response. Thus intertrigo is an irritant dermatitis caused by frictional trauma.¹

Body folds (flexures) are most common areas of intertrigo due to:

- Relatively high skin temperature.
- Moisture from insensible water loss and sweat cannot evaporate.
- Friction from movement of adjacent skin results in chafing. ²⁰

Heat, moisture, and sweat retention combine to cause maceration and irritation. Initially this moisture is derived from unevaporated eccrine sweat, but later the inflammation itself contributes to the moisture by "weeping". ¹⁵ As the stratum corneum becomes macerated because of hyperhydration, the friction intensifies and further damages the epidermis. This moist damaged skin associated with intertigo is a fertile breeding ground for various microorganisms and forms an entry point for organisms causing secondary infections. ^{4,14}

Infective organisms in intertrigo: Secondary skin infection can occur in the presence of intertrigo or may occur independently of any evidence of moisture associated skin damage. ⁹

Table 1: INFECTIVE ORGANISMS PLAYING ROLE IN INTERTRIGO.1

FUNGAL	- Candida (esp. in obesity or diabetes)
	- Dermatophytes: - Tricophyton mentagrophytes
	-Trichophyton rubrum
	-Epidermophyton floccosum
BACTERIAL	- Staphylococcus aureus
	- Beta hemolytic streptococci
	- Pseudomonas aeruginosa
	- E. coli
	- Proteus Sp.
	- Enterococcus facealis
	- Erythrasma caused by Corynebacterium minutissimum
MIXED	Either 2 different bacteria or bacteria with fungal infection

CLINICAL FEATURES:

Intertrigo is often a chronic disorder that begins insidiously with the onset of pruritus, stinging, and a burning sensation in skin folds. ¹⁴

Skin folds that may develop intertrigo are:

- Post-auricular fold
- Angles of lips
- Creases of neck
- Axillae
- Infra mammary (beneath pendulous breasts)
- Abdominal folds
- Umbilicus
- Finger and toe web spaces
- Crural folds
- Perianal/ natal cleft

Intertrigo usually begins as a well marginated diffuse erythema confined to areas of skin contacts like axilla, crease of neck, intergluteal areas, genitocrural region, web spaces of the fingers and toes. When the rubbing between the skin continues, maceration and frank erosion of epidermis cause dermatitis. Left untreated, the dermatitis becomes superinfected subsequently. Superinfection and infectious eczematous dermatitis may result in eczematization outside the skin folds.¹

Simple intertrigo: Initially skin folds appear erythematous with peripheral scaling, later develop maceration followed by erosions and fissuring. ^{14,15,21}

Candidal intertrigo: is characterized by typical appearance of skin lesions with satellite vesiculo pustules or papules. ^{5,22}

Bacterial intertrigo: Secondary infection with bacteria is associated with more severe inflammation and the lesions appear eczematous and progress to become pustular and crusted.²³

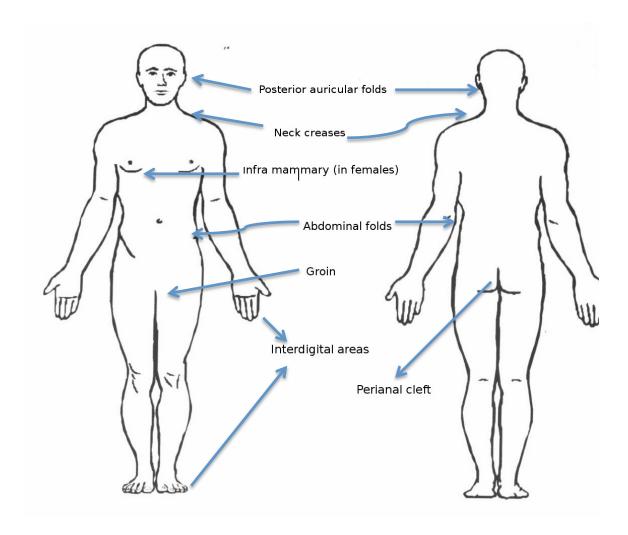


Figure 1: Intertriginous areas

DIFFERENTIAL DIAGNOSIS OF INTERTRIGO:

A) IN INFANTS AND CHILDREN¹

- Diaper dermatitis
- Seborrheic dermatitis
- Psoriasis
- Nutritional dermatitis zinc deficiency, biotin deficiency, breast feeding in premature infants.
- Candida
- Congenital syphilis
- Granuloma gluteale infantum
- Letterer siwe disease.

B) IN ADULTS 14

o Infectious conditions:

- Candidiasis (moniliasis): Superficial erythematous infection,
 commonly affecting moist, cutaneous areas of the skin; satellite
 pustules
- Dermatophytosis: Pruritic infections of nonviable keratinized tissues, such as nails and hair; contains a leading scale
- Erythrasma: Small, red-brown macules that may coalesce into

- larger patches with sharp borders; may be asymptomatic or pruritic; fluoresces coral-red on Wood lamp examination
- Pyoderma: Aggressive infection with boggy, blue-red bullae that progress to deep ulcers with hemorrhagic bases
- Scabies: Infection with intense pruritus and minimal cutaneous manifestations, including intertriginous burrows and papules; the head is spared in all age groups except infants
- Seborrheic dermatitis: Yellow, greasy, scaly plaques with overlying erythema; most often affects the face, postauricular region, and chest

Non infectious inflammatory diseases

- Atopic dermatitis: Red or brownish patches with intense pruritus;
 personal and family history of allergies and asthma is common
- Pemphigus vulgaris: Serious, often fatal, autoimmune disease;
 flaccid bullae, nikolsky sign
- Psoriasis: Chronic scaling papules and plaques; often affects extensor surfaces of elbows and knees, associated with silvery scale

Non inflammatory diseases

- Acanthosis Nigricans:hyperpigmentation with velvety thickened skin, predominantly in neck and body folds
- Hidraddenitis suppurativa: Chronic condition of apocrine gland bearing skin in the axillae or anogenital region

 Lichen sclerosus: Well demarcated, hypopigmented, atrophic plaques on genitalia, trunk and axillae

o Neoplasms:

- Bowen disease: Solitary, enlarging, erythematous, well defined plaque
- Paget disease: Erythematous plaques with scaling, crusting, exudation. Affects breast, axillae, or anogenital region
- Superficial basal cell carcinoma: Pink or flesh coloured papule often containing telangiectatic vessel.

FUNGAL INFECTIONS:

(i) <u>Candidal Intertrigo</u>: Candida intertrigo is the most common cutaneous candidal infection of hair-bearing skin.²⁴

Etiology and Risk Factors: The warm, moist environment of the skin folds is ideal for the growth of candida. The risk of infection is increased by specific factors that increases skin friction, increase moisture within folds, or interfere with the immune response within folds and/or promote fungal overgrowth. ^{1,6}

Candidiasis may affect the following sites:

- Inguinal folds
- Axillae
- Scrotum
- Intergluteal folds
- Inframammary folds
- Web spaces of the toes and fingers
- Abdominal folds, particularly beneath a pannus. 25
- Web spaces of the hands and feet: This is more common in warm climates and in those with frequently wet hands such as gardeners and housewives. The skin initially appears sodden, white and macerated followed by peeling. This condition is also called "Erosio interdigitalis blastomycetica".
- 2. Under breasts (submammary), axillae, in the groin or between the buttocks: This is characterized by abrupt onset of bright red irritable skin is that may peel leaving behind erythematous moist and macerated plaques and erosions with a thin overhanging fringe of epidermis at the margins. There are usually tiny pinpoint "satellite" pustules outside the advancing border. Lesions are often pruritic and painful.
- 3. Diaper candidiasis: Napkin dermatitis can get secondarily infected with candida and it is suspected from the involvement of the folds and occurrence of "satellite" pustules scattered along the margins of the larger lesions. ²⁵⁻²⁸

4. Perleche: Elderly patients can present with soreness and cracks at lateral angles of the month (angular cheilitis) that is secondarily infected with candida.
It starts as a sore fissure in the depth of the skin fold followed by development of erythema, scaling and crust formation at the sides of the fold.
Intertrigo presents as erythematous, macerated plaques and erosions with delicate peripheral scaling and erythematous satellite papulopustules. The pustules are easily ruptured, leaving an erythematous base with a surrounding collarette of epidermis. The lesions are often pruritic and may be painful. ^{25,29}

Laboratory Studies:

- 1. Direct examination under KOH reveals typical oval budding yeast cells with pseudohyphae.
- Microscopic examination of skin scrapings prepared with calcofluor white stain is
 another simple way of detecting yeasts and pseudohyphae of C.albicans.
 C.albicans binds non-specifically to polysaccharides found in fungal cell walls
 and produces a distinct bright color in a pattern characteristic for the organism
 when viewed under a fluorescence microscope.
- Culture from an intact pustule, skin biopsy tissue or desquamated skin can help support a diagnosis. Growth on Sabouraud's dextrose agar treated with antibiotics yields whitish mucoid colonies after incubation. ^{24,25}

Treatment:

- 1. Treatment is targeted at keeping the skin dry by using antifungal powders.
- 2. Topical antifungal agents are recommended for twice daily application until the symptoms resolve. Most commonly used agents are nystatin (polyene), miconazole, clotrimazole, ketoconazole (azoles), terbinafine (allylamine)
- 3. Oral antifungal agents: Patients with extensive or recalcitrant infection may require the addition of oral azoles.
 - Fluconazole (100 mg PO daily for 2-3weeks) or
 - Itraconazole (200 mg PO daily for 1-2 weeks). ²⁵

Sundaram et al. ³¹ noted that candidal intertrigo can be treated with filter paper soaked in Castellani paint.

(ii) Superficial dermatophyte infections in intertriginous sites.

Dermatophytes include a group of fungi that under most conditions have the ability to infect and survive only on dead keratin. Dermatophytes are responsible for the majority of skin, nail and hair fungal infections and they belong to three asexual genera:

Microsporum, Trichophyton and Epidermophyton.

Clinical Classification: Clinically dermatophyte infection are classified by body region affected.

Intertriginous areas infected by dermatophytes are:

- Groin and thigh region- Tinea Cruris
- Interdigital areas of fingers and toes- Tinea manum and tinea pedis
- Inframammary areas- Tinea corporis

Intertriginous infection with dermatophytes may be caused by T. rubrum, T. mentagrophytes, or Epidermophyton floccosum.

Tinea cruris, more frequently seen in adult males, is characterized by itchy, red, scaly, plaques on the upper medial thighs. Lesions tend to grow with a circular border, with central clearing. The macerated keratin compromises the cutaneous barrier and acts as a portal of entry for secondary bacterial infection leading to lymphangitis and cellulitis.

Tinea pedis: refers to dermatophytic infection of the feet or toes. Involvement often starts asymmetrically and then spreads to the other foot and, in susceptible individuals, to the hands. A secondary bacterial infection, often from the toe webs in a person with diabetes, can be life or limb threatening. ^{29,31}

There are primarily 3 types of tinea pedis:

- 1. Interdigital type
- 2. Moccasin type
- 3. Vesiculobullous type

Interdigital tinea pedis is the most common form and usually manifests in the interspace of the fourth and fifth digits and may spread to the underside of the toes. ^{32,33} Patients often complain of itching and burning sensations on the feet accompanied by

malodor. Dermatophytosis complex, as it is called, may have fissuring of the interspace along with hyperkeratosis, leukokeratosis, or erosions. ³⁴

The moccasin type is a more severe, prolonged form of tinea pedis that covers the plantar surface and lateral aspects of the foot. Its appearance is that of a slipper or moccasin covering the foot, hence the name. T. rubrum is most commonly associated with moccasin type tinea pedis. The skin of the inflamed area in this type of infection is often scaly and hyperkeratotic with erythema around the soles and sides of the foot. ^{32,33} Papules may also be noted around the demarcation line of erythema that surrounds the foot.

Vesiculo bullous tinea pedis type comprises of pustules or vesicles on the instep and adjacent plantar surfaces of the feet and is less common.³³ Fluid filled vesicles are usually clear but pus usually indicates secondary bacterial infection, most often with Staphylococcus aureus or group A Streptococcus. This form of tinea pedis may be associated with dermatophytid or "ID" reaction.³⁵

Diagnosis:

<u>KOH wet mount</u>: Direct visualization under microscope shows branching hyphae in keratinized material.

<u>Culture</u>: Dermatophytes are aerobic and grow on surface of media. Three types of culture media used most often for isolation are dermatophyte test medium, mycosel agar, and Saboraud's dextrose agar.

Treatment:

Topical: Topical terbinafine 1% cream or topical azoles can be applied twice daily for 2 weeks

Systemic:

Fluconazole 150mg per week for 4 to 6 weeks

Terbinafine 250mg per day for 2 weeks

Itraconazole 100mg per day for 2-4 weeks. ^{29, 36}

The diagnosis can be confirmed by examining fungal scrapings of the skin surface keratin for the presence of septate hyphae in potassium hydroxide preparations. A positive culture on Sabouraud's agar can identify the specific organism, but culture can take upto a month. About 20% of fungal infections are negative on a potassium hydroxide test and on culture. Dermatophyte infection generally responds well to topical antifungal creams.³¹

2) BACTERIAL INFECTIONS AND INTERTRIGO

The moist, damaged skin associated with intertrigo is a fertile breeding ground for various microorganisms and secondary bacterial infections are commonly observed in these areas. Bacterial proliferation may be associated with keratinocyte necrosis.

Bacterial Infections can primarily be divided into

- Gram Positive infections- e.g., Staphylococcus, Streptococcus
- Gram Negative infections- e.g., Pseudomonas aerugenosa, Acinetobacter

Mixed bacterial infections

Staphylococcus aureus may present alone or with group-A beta- hemolytic streptococcus (GABHS). Pseudomonas aeruginosa, Proteus mirabilis or Proteus vulgaris may also occur alone or simultaneously. ⁴

Toe-web infections can be caused or worsened by gram positive and gram negative bacteria. Gram negative toe web infections are often caused by P.aeruginosa combined with other gram negative bacteria such as Moraxella, Alcaligenes, Acinetobacter, and Erwinia. Gram positive infections are usually caused by S.aureus and GABHS and occasionally by Staphylococcus saprophyticus or other coagulase negative Staphylococci. 7,37

Gram-negative mixed bacterial infection with organisms such as Moraxella, Acinetobacter, Pseudomonas, Proteus, and Erwinia species, may represent a mild secondary infection of tinea pedis. Over time, in the setting of moisture and maceration, multiple fungal and bacterial organisms may proliferate. The process may progress to advanced stages of gram-negative infection with sepsis. ⁸

Streptococcal intertrigo presents as a well demarcated red, weeping intertrigo on neck folds, axilla or inguinal regions. It is characterized by foul odour and absence of satellite lesions. 38

Erythrasma: Erythrasma may complicate intertrigo of interweb areas, intergluteal and crural folds, axillae, or inframammary regions. Erythrasma is a bacterial infection caused by Corynebacterium minutissimum. It presents as small, red-brown macules that may

coalesce into larger patches with sharp borders. These lesions are often asymptomatic but may be pruritic in some instances.

Diagnosis:

- 1. Culture and sensitivity should be performed.
- 2. Wood's light examination identifies a Pseudomonas or Erythrasma infection more quickly than a culture. The Wood's light characteristically shows a green fluorescence with Pseudomonas infection and a coral-red fluorescence with Erythrasma.

Therapeutic modalities for intertrigo with secondary bacterial infection:

- 1. For patients with GABHS, an independent or concomitant regimen of topical therapies (e.g., mupirocin, erythromycin) is the best therapy. Oral antibiotics (e.g., penicillin, first generation cephalosporins) and low-potency topical steroids (e.g., hydrocortisone 1% cream) are useful. The latter may be particularly useful if the intertrigo is associated with seborrhoeic or atopic dermatitis.
- 2. Cutaneous erythrasma is best managed with oral erythromycin (250 mg four times daily for two weeks). Topical clindamycin, whitfield's ointment, sodium fusidate ointment and antibiotic soaps also may be beneficial.
- 3. Toe-web infections can be serious, and severe cases may warrant hospitalization.
 Tissue removal may be needed to allow absorption of topical antibiotic agents, which promote healing and slow the spread of infection. Antibiotic sensitivity should determine what topical and systemic therapies are used. Third generation

cephalosporins and quinolones are active, together with aminoglycosides.

Ciprofloxacin 500 mg twice daily for 10 days is another option, but some patients need parenteral therapy instead (e.g., 1 to 3g daily of intramuscular ceftazidime/ 2g daily of cefotaxime for 10 days).

3) OTHER COMMON DIFFERENTIAL DIAGNOSIS:

Psoriasis:

Inverse psoriasis or the intertriginous form of psoriasis is symmetrically distributed and bright red in colour with a sharp margin. It is distinguished from other forms of psoriasis by the absence of a silvery scale even in untreated cases. Intertriginous psoriasis is most common in the groin, under the breasts, in the axillae and in the perianal area, but it can occur in other locations. There is usually an absence of satellite papules or pustules. Involvement of other areas may help to establish the diagnosis.

Seborrhoeic dermatitis of the flexural areas:

Seborrhoea of the flexural areas is common in otherwise healthy, young infants. It presents as yellow-pink erythema, sometimes with a peripheral greasy scale. As infants become older, it gradually improves. This condition is rare in older children or adults except in association with immunosuppression or immunodeficiency.

Contact dermatitis of the flexural regions:

80% of contact dermatitis is due to irritants and 20% is allergic in nature. Irritant contact dermatitis is often diffuse, whereas many contact allergies produce bright red

erythema with discrete margins. Irritant contact dermatitis is common, due to irritants in soaps, detergents, fabric softener residue in clothes, deodorants, antiperspirants and antimicrobial preparations.

Common contact allergens in the flexural areas include perfumes; preservatives such as formaldehyde and formaldehyde releasers; topical antimicrobials, such as neomycin, bacitracin, polymyxin and others; and occasionally topical steroids. The allergic reaction can be reproduced by the repeat open application test. Products can be screened by applying them twice a day for two to three days in a coin-shaped circle on normal forearm skin. Allergic reactions to irritants or sensitizing agents can be confirmed by patch testing.

Atopic dermatitis of the flexural areas:

Atopic individuals often have a decreased ability to sweat, altered immunity and susceptibility to eczema in the body folds. Atopic flexural eczema is most common in the antecubital and popliteal fossae, usually starts once individuals can walk with an upright posture, and is less common as they reach adulthood.²¹ Itch often leads to scratching and rubbing the involved areas, which can produce increased skin surface markings (lichen simplex chronicus).⁹

Pemphigus Vegetans:

A variant of pemphigus vulgaris seen usually in middle aged adults. The disease presents as flaccid bullae that rupture leaving either changes of erosions, vegetation or papillamatous proliferation characteristically seen in the body folds. Its clinical course

begins insidiously initially in the nose or mouth and it has been noted to affect the scalp as well later progressing to involve the body fold. Lesions are primarily flexural although vegetations may occur at any site. There are 2 subtypes of pemphigus vegetans, the severe form also known as Neumann, and benign form Hallopeau type. Bullae and vesicles are predominant in the former and pustules are predominant in the latter. ³⁹

Benign familial chronic pemphigus (hailey-hailey disease):

It is an autosomal dominant disorder that is characteristically distributed in the intertriginous areas as recurrent chronic bullous and vescicular dermatitis that usually presents during late teens to twenties. It occurs due to defect in the calcium pump protein ATP2C1. It presnts as vescicle and erythematous plaques with overlying crusts in the genital as well as chest, neck and axillary areas. Heat, friction and infection exacerbate the symptoms. Biopsy usually distinguishes hailey-hailey from impetigo, pemphigus vulgaris or vegetans or darriers disease. 1,40

MICROBIAL ECOLOGY OF TOE WEB SPACES:

Normal skin is colonized by large number of harmless microorganisms which lives as commensals. Those organisms found regularly on skin constitute its normal flora. Normal flora has been classified into the following groups:

- 1. Resident flora Resident flora are the bacteria that grow on skin and are relatively stable in number and composition at particular sites.
- 2. Transient flora- Transient flora are organisms that lie free on the skin surface without any attachments and are derived from exogenous sources. They are unable to multiply on the skin and vary widely in both type and number. They disappear from skin within a short time.

TABLE 2: NORMAL SKIN FLORA. 41

BACTERIA			
Aerobic	Gram	Cocci	-Staphylococci (e.g., S.epidermidis,
	Positive		S.saprophyticus, S.hominis)
			-Micrococci
		Rods	-Corynebacteria
			-Brevibacterium epidermidis
			-Propionibacterium (some species)
	Gram Negative		Acinetobacter (Mima, Herellea)
Anaerobic bacteria:			Propionibacteria (P.acnes, P.granulosum,
			P.avidum)
			Peptococcus saccharolyticus (anaerobic
			staphylococci) 41
FUNGII			
			Candida species
			Pityriasporum

GRAM POSITIVE BACTERIA:

Staphylococci and Micrococci:

Coagulase positive staphylococci like S.aureus are pathogenic and are only transient residents in anterior nares and perineum. Humans have a high degree or resistance to their colonization. Coagulase negative staphylococci are most frequently found organisms of the normal flora.

Micrococci are much less frequently present than Staphylococci. 41,42

Coryneform bacteria:

These are gram positive rods, sometimes called diphtheroids. These are more common in intertriginous areas, especially toe web spaces with hyperhidrosis. ⁴³

Brevibacterium:

They are penicillin resistant rapidly growing coryneforms. They are frequently isolated from toe web spaces, especially in patients with tinea pedis and have been implicated in foot odour.⁴²

Propionibacteria:

They are non spore forming, anaerobic gram positive bacteria and are normal inhabitants of hair follicles and sebaceous glands.⁴⁴

GRAM NEGATIVE BACILLI:

These are not part of the resident flora as they die quickly on dessication. They are only transient flora in the perineum and perianal region. E.Coli, Klebsiella, Enterobacter are the predominant Gram negative rods. These organisms are known to cause systemic infections. Extended spectrum Beta lactamase are the resistant strains known to cause gram negative septicemia. 45

FUNGI:

Candida:

Normally found in 40% of oral mucosa. C.albicans is the most common species found in blastospore form. Increased colonization of the skin is seen in diabetics, psoriasis, atopic dermatitis and in patients who are immunosuppressed.

<u>Dermatophytes</u>:

Dermatophytes are a group of taxonomically related fungi. Their ability to form molecular attachments to keratin and use it as a source of nutrients allows them to colonize keratinized tissues, including hair and nails. ³⁶

Many external factors can alter the ecosystem of the skin, with resulting changes in microbial populations. These factors can alter or suppress the normal flora and instead promote colonization of other pathogenic organisms.

Environmental factors include temperature, humidity, salinity, and light exposure. Host factors include age, sex, immune status, hospitalization status, hygiene, use of medications (antibiotics, steroids), use of soaps and cosmetics, and presence of trauma.⁴⁶

Effect of climate on skin flora:

Increased temperature and humidity increase the density of bacterial colonizations and alter the flora.⁴⁷ Increase in heat and humidty also favours fungal growth. Cutaneous candidiasis, tinea versicolor and Trichohyton rubrum can be reproduced experimentally

when skin is occluded. The raised carbon dioxide produced by occlusion may favor conversion of yeasts and dermatophytes to more infectious stages.⁴²

Effect of body location:

Composition of the normal flora varies with body location. Face, neck and extremities are exposed areas and may have increased proportion of transient organisms and higher bacterial density. Head and upper trunk have more sebaceous glands and hence greater number of lipophilic organisms like propionibacterium. Axilla, perineuem and toe web spaces have partial or complete occlusion with increased moisture and temperature.

These areas are colonized with all organisms, particularly gram negative rods or coryneform organisms which need moisture for growth. 42

Effect of co-morbidities:

Systemic illness may have direct relation with the prevalence of infection and kind of organism that constitute the normal flora. Systemic illness may predispose to colonization or infection. In diabetes mellitus, skin glucose concentration is high and this factor may affect the colonization. Increased nasal carriage of S.aureus occurs in diabetic children compared to non-diabetics. Candidal infection is more prevalent in diabetics, more so in females.

Effect of Age:

Microflora can vary widely with age. In young children, micrococci, coryneform bacteria and gram-negative organsims are found more frequently compared to older children and

adults. Pityrosporum and propionic bacterium species are present at much lower levels before puberty. This may be attributed to the organisms requiring higher lipid levels for growth and multiplication, which is seen in puberty due to enhanced sebum production in puberty. Elderly patients have a decrease in sebum production and infection with these organisms is rare. ⁴²

Effect of Sex:

Men carry higher absolute number of organism and more biotypes. This maybe attributed to the higher rate of sweating in men as well as tendency to wear more occlusive clothing. Increased sebum production and hormonal differences may also contribute.

Effect of occupation:

Gram negative organisms, candida and coryneforms are microflora which have preference to hot and humid environment, hence occupations exposing individual to hot and humid environment may lead to infection with these organisms. Hospital workers are known to harbor more pathogenic organisms and more resistant strains.

Effect of soaps and disinfectants:

Repeated washing with soap makes skin more alkaline compared to washing with disinfectants. Propionibacteria are markedly increased when soap is used and reduced in number with use of medical disinfectants. Antibiotics suppress the normal flora and increase colonization by other organisms. They also impair bacterial adherence to epithelial cells and allow the natural selection of organisms like gram-negative rods,

candida or pityrosporum. Oral steroids and hormones are associated with change in the normal flora. Steroids suppress immune system and increase susceptibility to bacterial, fungal, viral and parasitic infections. Frequent use of topical antibiotics may induce resistant strains to appear. ⁴²

FOOT INTERTRIGO (TOE WEB INTERTRIGO)

Foot intertrigo affecting the interdigital toe web spaces occurs due to a combination of factors such as increase in moisture content, temperature, friction and maceration in conjunction with overgrowth of yeasts, dermatophytes, and bacteria.

Some of the common predisposing factors of foot intertrigo are: 4,37,42,48

- Occlusive footwear
- Hyperhidrosis
- Poor hygiene
- Excessive exposure to water and moisture.
- Athletic and sporting activities
- Repeated foot washing
- Use of communal baths
- Host factors such as diabetes mellitus, obesity and immunosuppression.

Intertrigo is very common in Toe web spaces because:

- Air circulation is limited
- Semi occlusive environment of the toe web spaces retains sweat and increases moisture content
- Friction between the toes is very common
- Hyperhidrosis is more predominant in the palms and feet

AETIOLOGY:

Any body site such as the toe web space, that is habitually colonized by polymicrobial flora creating a precariously balanced cutaneous ecosystem caused by mechanisms of biologic interference typically has a variable aetiology. 49,50

Interdigital foot intertrigo is commonly infected by dermatophytes, but it can also be infected with bacteria, yeasts or non-dermatophyte moulds.⁹

Dermatophytes that commonly complicate interdigital intertrigo include Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum. Gram-positive and gram-negative bacteria can also complicate interdigital intertrigo. Gram-negative toe web infections are often caused by Pseudomonas aeruginosa. This may occur as an isolated pathogen, or as a part of polymicrobial infection with other gram negative bacteria such as Escherichia coli, Proteus, Moraxella, Alcaligenes, Acinetobacter, and Erwinia species. Gram-positive infections are usually caused by Staphylococcus aureus and Group A Beta Hemolytic Streptococcus and occasionally are caused by Staphylococcus saprophyticus or other coagulase-negative staphylococci. However, gram-negative and gram-positive infections occasionally occur simultaneously. 47,37

Yeasts such as Candida albicans also commonly cause interdigital toe web infections.⁵¹

PATHOPHYSIOLOGY:

Interdigital toe web infections have been traditionally regarded as strictly a fungal infection. However, this assumption has been revised, because often fungi cannot be isolated from the lesions throughout the disease course. ⁵²

The inability to culture dermatophytes from macerated toe web spaces is now understood in terms of the dynamic interplay between fungi and bacteria. 42

Interdigital toe web infections often involve an ecologic interplay in which an initial dermatophyte infection provides a hospitable niche for subsequent colonization by bacteria. Dermatophytes which are usually the first invaders incite the damage to the stratum corneum, that allows bacterial overgrowth, which promotes maceration and hyperkeratosis. These dermatophytes produce natural substances with antibiotic activities that can affect the composition of the residing bacterial flora and determine antibiotic-resistant strains. The prevalence of particularly Brevibacterium epidermidis, Micrococcus sedantarius, Corynebacterium minutissimum, Staphylococcus aureus and various gramnegative species increases and the presence of these pathogenic and more virulent bacteria in presence of a damaged stratum corneum is responsible for clinically aggravating the lesions. 53-56

A probable mechanism by which dermatophyte positive interspaces can be converted into macerated interspaces from which fungi can't be recovered involves the production of a variety of potent antifungal sulfur compounds such as methanethiol, ethanethiol, dimethyl sulfide and others produced by M. sedantarius and B-epidermidis.⁴²

In other cases, gram-negative intertrigo appears independently and is favored by preexisting local conditions such as marked hyperhidrosis and cutaneous maceration, often caused by closed shoes or the practice of wet sports, especially in hot water.^{7,53,57} Pseudomonas aeruginosa, mostly in association with other gram-negative bacteria, is the main causative agent of these clinical forms, which are characterized by an acute worsening trend and create therapeutic problems related to the appearance of early antibiotic resistance. ^{58,59}

CLINICAL MANIFESTATIONS OF FOOT INTERTRIGO:

The term foot intertrigo consists of different clinical manifestations; these may present with a chronic, more or less asymptomatic, erythematous desquamative type of lesions or they may include an acute form with an exudative, macerating, painful inflammatory process that may lead to discrete functional impairment. The etiology is variable and a differential diagnosis based on a clinical features alone is difficult because the initial phase of the infection is often common to interdigital tinea pedis, candidal intertrigo, and bacterial intertrigo.^{7,8} Interdigital toe web infection is usually associated with burning sensation but it may be mild and asymptomatic³ or it may be painful.¹⁴

During the initial stage of 'dermatophytosis simplex', there may be only an asymptomatic scaling. The occlusive environment of the toe web space can exacerbate this mild dermatophyte infection resulting in malodourous maceration and inflammation followed by a more severe, symptomatic 'dermatophyte complex' which occurs due to overgrowth of opportunistic bacteria at the cost of the dermatophytes. ^{53, 54,60}

Clinical manifestations are similar in most of the patients and clinical features can include erythema, vesicopustules, erosions, purulent and profuse discharge, marked maceration and ulceration.³⁷ In severe intertrigo, patients may have a purulent discharge with edema and intense erythema of tissues surrounding the infected area.^{4,14} Green discoloration at the infection site is seen in patients with gram negative bacterial infections.

Interdigital intertrigo can progress to a severe bacterial infection with pain, mobility problems, erysipelas, cellulitis, abscess formation, fasciitis, and osteomyelitis causing pain that is so severe that the patient is unable to ambulate.

Patients with severe toe web intertrigo, who are overweight or who have diabetes are at a higher risk for cellulitis.⁴

DIFFERENTIAL DIAGNOSIS OF INTERDIGITAL FOOT INTERTRIGO:

- 1. <u>INTERDIGITAL TINEA PEDIS</u>: This is the most common type of tinea pedis which is predominantly caused by dermatophytes like Trichophyton rubrum, Trichophyton mentagrophytes and Epidermophyton floccosum. It ususally begins as dry scaling of the interdigital and subdigital skin of the feet and later develops interdigital maceration, and fissures. It commonly affects the third and fourth toe web spaces but it may involve all the toe web spaces. Sometimes it spreads to involve the undersurface of the toes, sole and rarely the dorsum. It is most often associated with itching and malodour. ^{26,36}
- 2. <u>CANDIDAL INTERDIGITAL INTERTRIGO</u>: Interdigital candidal infection of the hands and feet is called as Erosio interdigitalis blastomycetica. This form of candidiasis is typically seen as oval shaped area of white maceration in the third web space between the middle and ring fingers. Denudation of the maceration reveals a moist, pink erythematous area surrounded by a collar of overhanging white epidermis. Lesions in the toe web spaces are similar but the white

maceration is very thick, adherent and does not peel off freely and it most commonly involves the fourth toe web space. ^{28,29}

3. <u>BACTERIAL INTERTRIGO</u>: This is usually much more macerated, malodorous, and exudative, and painful than T.pedis. It is caused by either gram positive or gram negative organisms or most often by mixed infections. Gram-negative toe web intertrigo, often caused by Pseudomonas aeruginosa, is more frequent and it is characterized by vesiculopustules, maceration, malodorous discharge and marked edema and erythema of the surrounding tissues. It may be associated with cellulitis and inability to walk.^{2,7,56}

Erythrasma is another bacterial infection that can affect the major skin folds and the interdigital spaces of the feet. It is caused by lipophilic, diphtheroid, filamentous, gram-positive bacillus Corynebacterium minutissimum and is characterized by erythematous, brown, scaly patches and maceration, and exhibits coral-red fluorescence under Woods lamp examination. These lesions are often asymptomatic but may be pruritic in some instances. ^{4,61}

4. <u>CUMULATIVE IRRITANT CONTACT DERMATITIS</u>(CICD): This type of dermatitis develops as a result of a series of repeated and damaging insults to the skin. These insults may include both chemical irritants and a variety of harmful physical factors, such as friction, microtrauma, low humidity, the desiccant effects of powder, soil or water and temperature. Cumulative irritant dermatitis most

- commonly affects the dorsa of the hands, fingertips and the webs of the fingers and toes. 62
- 5. <u>SCABIES</u>: It is an infestation of the epidermis with the mite, Sarcoptes scabiei var. hominis involving interdigital web spaces and other intertriginous sites. It is typically characterized by intense pruritis which is worse at night. The pathognomonic lesions of scabies are burrows, which appear as slightly raised, brownish, tortuous lesions characteristically seen over the flexor aspect of the wrist, finger web spaces, instep of the feet and genitalia. However, pruritic, inflammatory papules and papulo-vesicles constitute the more frequent and obvious findings. These lesions are predominantly seen over the interdigital spaces, axillae, flexor aspect of wrists, elbows and knees, periumbilical areas and also genital areas. 63,64
- 6. CORNS (clavi or helomata) OR CALLUSES (tylomata) are, respectively keratotic papules and plaques that occur in areas that are subject to sustained, excessive mechanical shear or friction forces. Crookedness of the lateral toes leads to prominence of the proximal and/or distal interphalengeal (IP) joints. This results in formation of corns or calluses either in between the toes or dorsal to the IP joints or on the lateral aspect of the fifth toe. The interdigital corn can be hard if they are adjacent to the IP joints or soft when present deep within the fourth inter digital space. Soft corns or calluses, sometimes with sinus formation, are common in the lateral toe web spaces, especially in women. ^{26,65}

7. PSORIASIS: Psoriasis involving the intertriginous areas is most common in the groin, sub mammary areas, axillae and perianal area but it can occur in other areas. However psoriasis of the interdigital spaces has not been described frequently in the literature. The term "white psoriasis" or "psoriasis alba", was first introduced by Waisman in 1961 to describe interdigital psoriasis. This is a distinct but atypical form of psoriasis that is often missed as it is commonly mistaken for interdigital fungal infection. If recalcitrant whitish, sodden patches are present, especially in patients with other psoriatic clinical features as well, if mycological cultures are consistently negative, and if there is no response to antimycotic treatment, interdigital psoriasis should always be considered. 66, 67

LABORATORY TESTS:

- Gram stain, bacterial culture and sensitivity testing, potassium hydroxide
 preparation, and fungal culture should be performed to determine the etiologic
 agents.
- Wood lamp Examination: It characteristically shows a green fluorescence with Pseudomonas infection and a coral-red fluorescence with erythrasma.
- Skin biopsy is usually not required because the histology of intertrigo shows no characteristic features.⁴
- In addition, complete blood cell counts with differential and fasting blood glucose levels may be used to screen the patient's immune status and to exclude diabetes mellitus.

FIGURE 2: Severe Gram-negative toe web infection showing denudation, discharge and greenish discolouration.⁶⁰

FIGURE 3: Erosio interdigitalis blastomycetica. ⁵

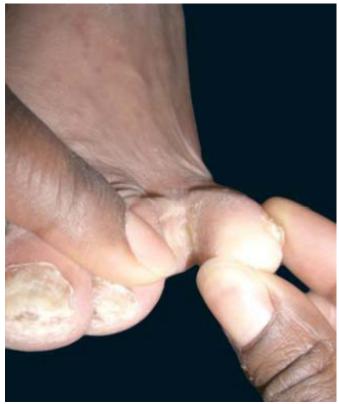


FIGURE 4: Soft corn located deep within the 4th interdigital space.⁶⁵

FIGURE 5: Tinea pedis- interdigital type showing maceration, scales and erosion. ³⁶

TREATMENT:

There is relatively little evidence from controlled trials addressing the best therapy and strategies for prevention of intertrigo. However, the following basic treatment approach to intertrigo is generally successful. ^{4,9,25}

PRINCIPLES FOR MANAGEMENT OF INTERTRIGO:

- 1. Address the predisposing and precipitating conditions
- 2. Anti infective therapy
- 3. Anti inflammatory therapy
- 4. Patient education
- 5. Preventive strategies for recurrences ^{2,7,25}

1. CORRECTING THE PREDISPOSING AND AGGRAVATING FACTORS:

An important component to successful treatment is the correcting of predisposing factors and underlying conditions, such as diabetes mellitus, that may contribute to infection. When obesity is a contributing factor, weight loss should be encouraged.

Occlusive footwear should be avoided and exposure to moist environment should be limited. If foot deformities are noted, then corrective surgeries for correction of foot deformities should be considered.

The main principle of therapy for simple or uncomplicated intertrigo is to eliminate the heat, friction and maceration by keeping the skin folds clean, dry, and cool. ^{4,14,21}

BARRIER AGENTS: Topical barrier creams protect the skin from contact irritants and they include zinc oxide, petrolatum, liquid acrylates and silicone or dimethicone based creams. ^{9,21}

DRYING AGENTS: Various topical drying agents have been employed to keep the skin folds dry, clean and cool. These include aluminum sulfate calcium acetate solution, antiseptic drying agents such as potassium permanganate solution, talcum powder, short chain fatty acid powders like undecyclic acid and antifungal powders.

Drying agents are typically used after an adequate course of antifungal therapy has been completed to help maintain a dry intertriginous environment and minimize the risk of maceration and reinfection. Patients at high risk for recurrence of intertrigo should use a drying powder indefinitely.

Drying agents cannot be applied simultaneously with antifungal creams or ointments as this will result in a sticky paste. If used together, the preparations should be applied several hours apart. 14,25

2. <u>ANTI-INFECTIVE THERAPY</u> - Intertrigo is often complicated by fungal or bacterial infections which should be promptly treated with appropriate antifungal or antibacterial medications based on the laboratory findings.

Topical antifungal agents used in treatment of intertrigo include:

- Polyenes like Nystatin- effective only against candida. 4
- Azoles like clotrimazole, ketoconazole, miconazole, econazole, and oxiconazole –
 are broad spectrum antifungals that are effective against both candida species and

dermatophytes.

 Allylamines- like terbinafine are effective against dermatophytes and a number of yeasts and moulds.

Oral antifungals: Systemic antifungal medications are rarely necessary for the treatment of intertrigo and treatment with an oral agent should generally only be used only in case of recalcitrant and severe infection.

Oral antifungals typically used include:

Fluconazole 50 to 100 mg daily for 2 to 3 weeks or 150 mg weekly for 3 to 4 weeks

Itraconazole 200 mg daily for 1 to 2 weeks

Ketoconazole 200 mg daily for 1 to 2 weeks

Terbinafine 250 mg twice daily for 2 weeks. 4,25

Antibacterial agents: Ideally antibiotic sensitivities should determine what topical and systemic therapies should be used. Tissue removal may be needed to allow absorption of topical antibiotic agents, which promote healing and slow the spread of infection. ⁴

Topical antibiotic agents include:

Mupirocin - Mupirocin is highly effective against aerobic gram-positive cocci, especially S.aureus, for which it is bactericidal at the concentrations present in the commonly used 2% ointment. It is not effective against enterococci and generally has poor activity against gram-negative bacteria. ⁶⁸

Topical aminoglycosides like clindamycin gel, amikacin gel, gentamicin cream are highly active against gram-negative organisms such as Pseudomonas and some gram-positive bacteria, including some staphylococcal strains.

Topical erythromycin – is useful in treatment of erythrasma.

Systemic antibiotics: Topical antibiotics are often inadequate in treating some cases of bacterial intertrigo. Systemic antibiotics should be considered in such patients if topical treatment fails or there is extensive disease.³ Some of the antibiotics found effective in treatment of bacterial intertrigo are:

Third generation cephalosporins

Quinolones-Ciprofloxacin

Aminoglycosides – gentamycin

Oral antibiotics combined with cleansing and debridement is often effective. But some patients may need parenteral therapy instead (e.g., 1 to 3 g daily of intramuscular ceftazidime, 2 g daily of cefotaxime for 10 days). ^{3,4,37}

Miscellaneous agents:

<u>Castellani paint</u>: Castellani paint acquired its name from an Italian physician, Sir Aldo Castellani (1877-1971). It is also called carbol fuchsin paint. It is an antiseptic and a drying agent which has fungicidal and bactericidal properties along with an anesthetic effect on the skin.

The paint is a mixture of resorcinol (8 g), acetone (4 mL), magenta (0.4 g), phenol (4.0 g), boric acid (0.8 g), industrial methylated spirit 90% (8.5 mL), and water (100 mL). ^{37,42}

Whitfield's ointment: It contains 12% benzoic acid and 6% salicylic acid and has non specific antifungal properties. It acts as a keratolytic agent causing desquamation of keratinized epidermis containing fungal organisms.⁴²

Surgical Care:

Occasionally, if the infection is advanced, superficial debridement may allow creams, ointments, or other antibiotic agents to reach infected areas faster, promoting healing and stopping the spread of the infection into surrounding areas. ³⁷

3.ANTI INFLAMMATORY THERAPY

In case of simple uninfected intertrigo, mild topical corticosteroids may be added to reduce the inflammation. ²

<u>Topical corticosteroids</u> – Although low potency topical glucocorticoids may be used in conjunction with antifungal therapy to treat associated pruritus, pain, and burning, these symptoms generally respond quickly to antifungal therapy alone. Thus the use of topical glucocorticoids is usually not necessary. Moderate and high potency glucocorticoid preparations should be avoided.

<u>Topical calcineurin inhibitors</u>: Topical tacrolimus or pimecrolimus may also be used in treatment of patients with intertrigo due to noninfectious inflammatory etiologies. It might also be expected to provide benefit in those patients with candida intertrigo in whom a topical antiinflammatory agent is indicated but who are unable to use topical glucocorticoids. ^{2,25}

4. PATIENT EDUCATION:

Patients should be educated about the predisposing factors, and the chronic nature of disease.

Also, measures that are aimed at eliminating the moisture that provides the environment for infection and its recurrence should be explained to the patients. Patients should also be instructed about proper hygiene which is a primary preventive measure. Instructions about wearing open-toed shoes and avoiding skin maceration are essential. ^{37,42,48}

5) PREVENTION OF RECCURENCES

- Keeping the area affected by intertrigo clean, dry and exposed to air can help prevent recurrences.
- Weight loss should be encouraged if obesity is a predisposing factor.
- A structured skin care routine based on gentle cleansing, moisturizing (preferably with an emollient) and application of a skin barrier protectant may help.
- Patients who engage in water-related sports should shower afterwards and ensure that interdigital spaces are thoroughly dried to prevent creating an environment for bacterial growth.
- Wearing open-toed shoes may help prevent toe web intertrigo
- The use of gauze pledgets between the toes helps prevent occlusion, and the use of astringent soaps reduces the number of gram-negative bacteria. 4,9,14,37

TABLE 3: INTERTRIGO AND TREATMENT

CONDITION	TREATMENTS	
Intertrigo	Topical: zinc oxide ointment, petrolatum, talcum	
	powder, aluminum sulfate, calcium acetate solution	
Intertrigo complicated by seconda	ary bacterial infections	
Erythrasma	Topical: erythromycin, clindamycin, Whitfield	
	ointment, chlorhexidine	
	Oral: erythromycin	
Group A beta- hemolytic	Topical: mupirocin (Bactroban), erythromycin, low-	
streptococcus	potency steroids	
	Oral: penicillin, cephalexin (Keflex), ceftriaxone	
	(Rocephin), cefazolin, clindamycin	
T 4 4 1 1 1		
Intertrigo complicated by seconda	ary fungal infections	
Candida	Topical: nystatin, clotrimazole, ketoconazole,	
	oxiconazole (Oxistat), econazole	
	Oral: fluconazole (Diflucan; used for resistant cases)	
Dermatophytes	Topical: clotrimazole, ketoconazole, oxiconazole,	
	econazole	

MATERIALS AND METHODS

MATERIALS AND METHODS

The present study was a hospital based cross sectional study, carried out at Sri R.L.Jalappa Hospital and Research centre attached to Sri Devaraj Urs Medical College, Tamaka, Kolar, from January 2012 to June 2014 over a period of 18 months. All patients reporting to the Department of Dermatology, Venereology and Leprosy, at the above mentioned hospital were evaluated for inclusion into the study and patients having clinically diagnosed foot intertrigo were enrolled into the study after obtaining an informed consent.

CRITERIA FOR SELECTION:

Inclusion criteria

❖ All patients with clinically diagnosed foot intertrigo.

Exclusion criteria

- Patients who had taken systemic antibiotics or antifungal medications within last 1 month.
- A Patients who had used topical antibiotics or antifungals within last 15 days.

A total of 115 patients with clinically diagnosed foot intertrigo were included in the present study based on the selection criteria. Detailed history including the presenting illness, systemic diseases, past history and family history were taken. In particular, history regarding predisposing factors such as hyperhidrosis, frequent exposure to wet conditions, occlusion, exercise and athletic activities, trauma, immobility, occupation, previous use of medications were taken.

A complete clinical examination including detailed dermatological examination of the foot lesions with respect to their anatomical location, distribution and morphology, and other associated dermatoses were performed. All the data collected were entered in a proforma given in the annexure.

Relevant investigations such as complete haemogram and blood sugar levels were performed to screen for patient's immune status and to rule out diabetes mellitus. Wood's lamp examination was performed in all cases of erythrasma to look for characteristic coral red fluorescence in toe web spaces.

Specimen were collected from the superficial and deeper areas of the lesions by sterile techniques and were subjected to direct microscopic examination (KOH mount and Grams stain), fungal culture and bacterial culture. Antibiotic susceptibility test was done by disc diffusion technique.⁶⁹

SPECIMEN COLLECTION:

The affected area was cleaned with sterile swab moistened with normal saline and allowed to dry. Scrapings from the lesions were taken with the scalpel blade or with forceps. This material was used for KOH examination and for Gram staining. Specimens from deeper area of the lesions were collected with sterile swabs moistened with sterile water and were sent for culture.

MYCOLOGICAL STUDIES:

Direct Examination of the skin scrapings mounted with 10% KOH

The scrapings from the lesions were placed on a clean glass slide to which 1-2 drops of 10% KOH was added and was covered with a coverslip. It was warmed slightly over a low flame, and kept for 20 minutes. Once skin material was digested, the coverslip was pressed down to squash the fragments and render them transparent, and the excess KOH was blotted off using a blotting paper. This preparation was examined under low power and high power magnification for fungal elements.

Culture for Fungi

A part of the specimen was inoculated onto two Sabouraud's Dextrose Agar (SDA) plates. One was incubated at 37°C and other was kept at room temperature, for four weeks. Culture plates were examined every week for growth of any fungi. If any growth was obtained, it was further analyzed for and colony characteristics, pigment production and the morphology was studied under a microscope in lactophenol cotton blue (LPCB) mount of the growth.

Germ Tube Test

A smear was prepared from the suspected colony of candida stained by grams stain and observed for gram positive oval budding cells. If candida was present, a germ tube test was performed to identify Candida albicans species.

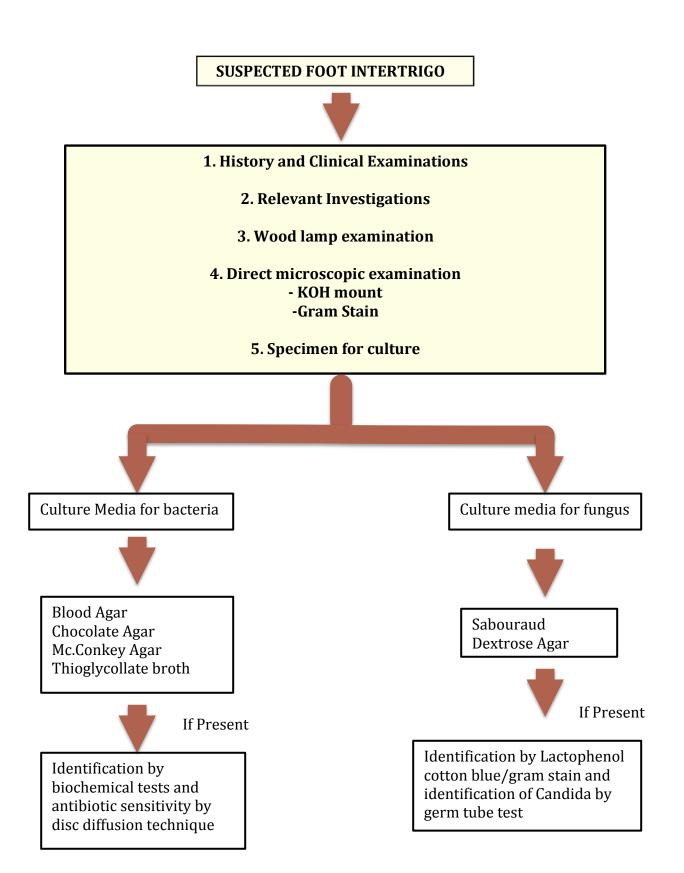
BACTERIOLOGICAL STUDIES:

Gram Stain Preparation

Smear from the clinical specimen was prepared and stained with Grams stain to look for any gram positive or gram negative bacteria.

Culture for Bacteria

The culture media used were nutrient agar plate, blood agar plate, chocolate agar plate and McConkey's agar plate. The specimens were inoculated on these media and incubated for 24 hours at 37°C. The blood agar and chocolate agar were incubated in carbon dioxide incubator. Smears were prepared from the colonies and stained by grams stain. The colonies grown on the plate were smeared and stained by Gram's stain method. In addition, relevant biochemical tests were done for identification of the organism.


Antibiotic Sensitivity Testing

All the organisms isolated were tested for antibiotic sensitivity by Kirby Bauer's Disc Diffusion Technique. The results were interpreted as sensitive, moderately sensitive and resistant.

STATISTICAL ANALYSIS:

Data was compiled in Microsoft excel after coding and was analyzed using SPSS 20 version software. Qualitative data was represented by frequencies and proportions and analyzed.

FIGURE 6: APPROACH TO CASE OF FOOT INTERTRIGO

OBSERVATION AND RESULTS

OBSERVATION AND RESULTS

Table 4: Age distribution of subjects with Foot Intertrigo

		Frequency	Percent
	<10yrs	3	2.6%
	11 to 20 yrs	5	4.3%
	21 to 30 yrs	20	17.4%
	31 to 40 yrs	18	15.7%
Age	41 to 50 yrs	30	26.1%
	51 to 60 yrs	24	20.9%
	61 to 70 yrs	9	7.8%
	>70yrs	6	5.2%
	Total	115	100.0%

Mean age of the subjects 44.71 ± 17

Age 30 26.1 25 20.9 17.4 20 15.7 15 7.8 10 4.3 2.6 5 <10yrs 11 to 20 21 to 30 61 to 70 >70yrs 31 to 40 41 to 50 51 to 60 yrs yrs yrs yrs yrs yrs

Figure 7: Bar diagram showing age distribution of subjects with Foot Intertrigo

In the present study, majority of subjects were in the age group 41 to 50 yrs i.e. 26.1%, 21% in 51 to 60 yrs age group. Least was found in age group < 10 yrs. Youngest

was 4 years old and oldest was 86 years. Mean age was 44.71 ± 17 . Foot Intertrigo was common in Middle age group.

Table 5: Sex distribution of subjects with Foot Intertrigo

		Frequency	Percent
	Females	57	49.6
Sex	Males	58	50.4
	Total	115	100.0

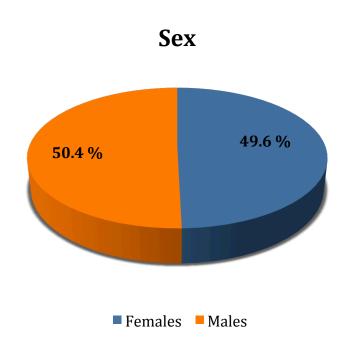


Figure 8: Sex distribution of subjects with Foot Intertrigo

There were total of 57 females and 58 males. There was no predilection towards either sex.

Table 6: Distribution of subjects with Foot Intertrigo based on Occupation

		Frequency	Percent
	Agriculture	22	19.1%
	Housewife	39	33.9%
	Student	9	7.8%
	Maid	9	7.8%
Occupation	Daily laborer	8	7.0%
	Retired/ Unemployed	9	7.8%
	Businessman	6	5.2%
	Skilled work	13	11.3%
	Total	115	100.0%

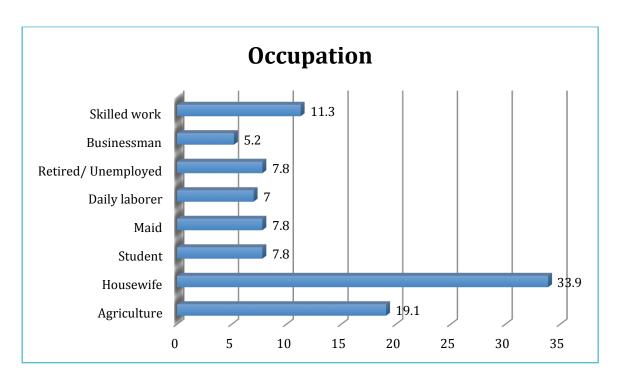


Figure 9: Bar diagram showing Distribution of subjects with Foot Intertrigo based on Occupation

Foot Intertrigo was common among Housewives (33.9%) and agriculturists (19.1%).

Table 7: Onset of Foot Intertrigo

		Frequency	Percent
	Acute	26	22.6 %
Onset	Insidious	89	77.4 %
	Total	115	100.0

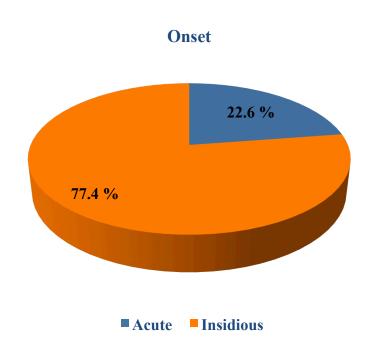


Figure 10: Pie diagram showing Onset of Foot Intertrigo

Majority i.e. 77.4% of subjects had insidious onset and 22.6% had acute onset.

Table 8: Duration of disease in Foot Intertrigo subjects

		Frequency	Percent
	< 6 months	32	27.8
	6 months to 1 year	12	10.4
Duration of	1 year to 2 year	27	23.5
disease	2 year to 5 year	31	27.0
	> 5 years	13	11.3
	Total	115	100.0

Duration of disease

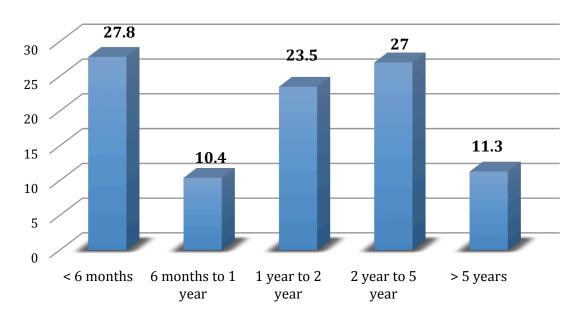


Figure 11: Bar diagram showing duration of disease in subjects of Foot Intertrigo

In the study 27.8% had disease for < 6 months, 27% had disease for 2 to 5 years of duration.

Table 9: Number of predisposing factors among Subjects

		Frequency	Percent
No Predisposing fa	actors	23	20
Number of	1	73	63.5
Predisposing	2	17	14.8
factors	3	2	1.7
1444012	Total	115	115

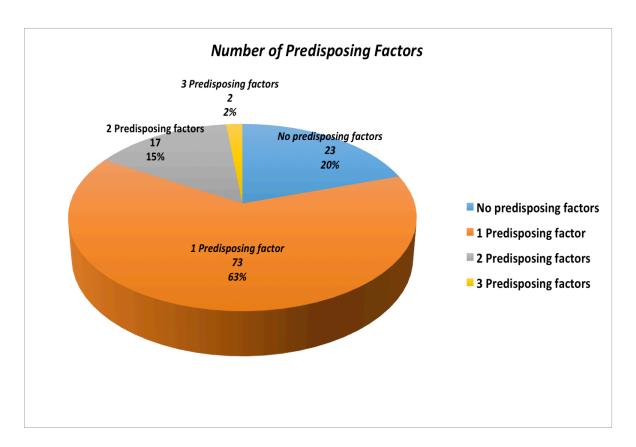


Figure 12: Pie diagram showing Number of Predisposing Factors in subjects of Foot Intertrigo

No predisposing factor was seen in 23 (20%) of the cases. Of the remaining 92 cases, 1 predisposing factor was seen in 73 (63.5%), 2 predisposing factors in 17 (14.8%) and 3 factors in 2 cases (1.7%).

Table 10: Predisposing factors among Subjects

Predisposing factors	No. of Cases	Percentage
Wet conditions	57	49.6%
Hyperhidrosis	10	8.7%
Poor Hygiene	13	11.3%
Occlusive Foot wear	22	19.1%
Foot Deformity	5	4.3%
Obesity	4	3.5%
Immobility	4	3.5%
Athlete	1	0.9%

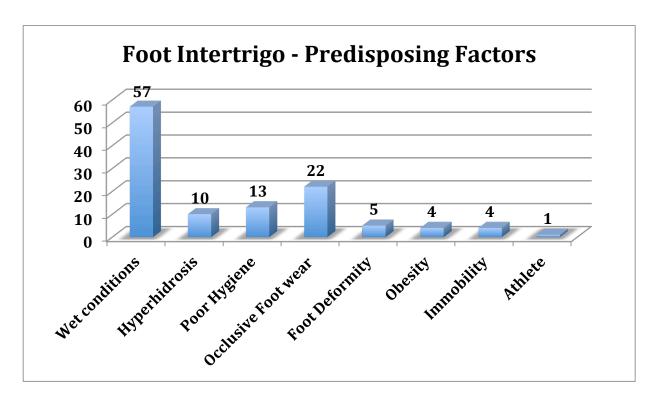


Figure 13: Bar diagram showing Distribution of Predisposing factors in Foot Intertrigo

Most common predisposing factor was Wet conditions in 49.6%. 19.1% had occlusive foot wear as predisposing factor. Poor hygiene and Hyperhidrosis was seen in 11.3% and 8.7% cases respectively.

Table 11: Distribution of associated conditions among the subjects

Associated Condition	Number of cases	Percentage
Diabetes Mellitus	28	24.3%
Hypertension	6	5.2%
Superficial Dermatophytosis	22	19.1%
Intertrigo at other sites	11	9.5%
Eczema	10	8.7%
Hyperkeratotic dermatoses	8	7%
Onychomycosis	3	2.6%
Trophic Ulcer	3	2.6%
Pyoderma	4	3.5%
Cellulitis	5	4.3%
Hansens	3	2,6%
Lipodermatosclerosis	3	2.6%
Psoriasis	2	1.7%
Paronychia	2	1.7%
Pitted Keratolysis	2	1.7%
Diabetic Bullae	2	1.7%
Erythrasma	1	0.9%
Miscellaneous	9	7.8%

Most common associated condition found along with Foot intertrigo were Diabetes mellitus in 28 (24.3%), followed by Superficial dermatophytosis seen in 22 cases (19.1%), and other sites Intertrigo seen in 11 cases (9.5%). Eczemas were seen in 10 (8.7%) cases and Hyperkeratotic deratoses seen in 8 (7%) cases. One of the major complications of Foot Intertrigo, Cellulitis, was seen in 5 (4.3%) cases.

Table 12: Number of Symptoms in Foot Intertrigo subjects

		Frequency	Percent
Asymptomatic		46	40 %
	1	47	40.9 %
Number of	2	20	17.4
Symptoms	3	2	1.7
	Total	115	100.0

46 patients (40%) were asymptomatic at the time of presentation. 47(40.9%) had 1 symptom, 20(17.4%) had 2 symptoms and 2 (1.7%) of them had 3 symptoms.

Table 13: Presenting complaints in Foot Intertrigo subjects

	Number of cases	Percentage
Asymptomatic	46	40%
Symptoms	69	60%
Burning sensation	16	13.9%
Itching	42	36.5%
• Pain	23	20%
Scaling	10	8.7%

In the study only 60% had symptoms, 13.9% had burning sensation, 36.5% had itching, 20% had pain and 8.7% had scaling.

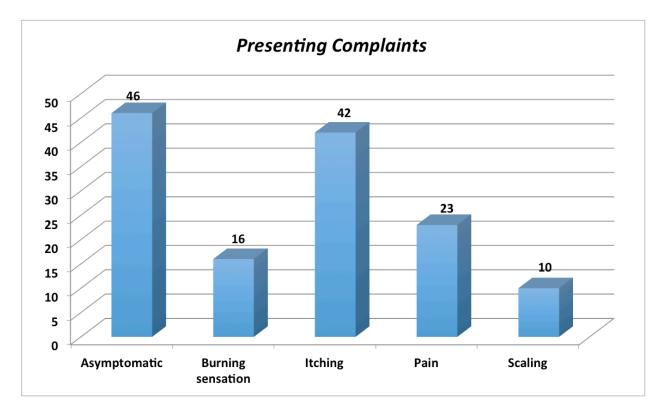


Figure 14: Bar diagram showing Distribution of Complaints in Foot Intertrigo subjects

Table 14: Primary lesions among the subjects

Primary lesions	Present	Absent
Papule	6 (5.2%)	109 (94.8%)
Vesicle	10 (8.7%)	105 (91.3%)
Pustule	10 (8.7%)	105 (91.3%)
Bullae	3 (2.6%)	112 (97.4%)
Papule	7 (6.1%)	108 (93.9%)
Macule	1 (0.9%)	114 (99.1%)

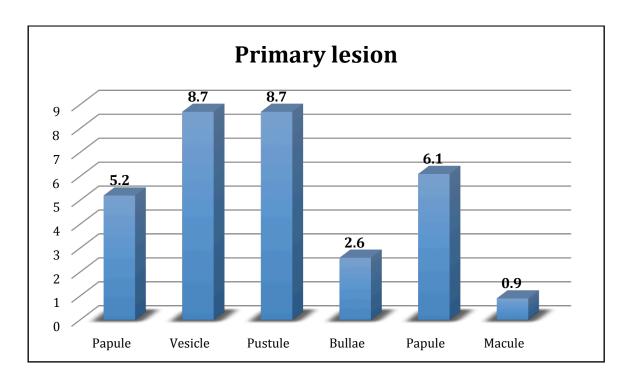


Figure 15: Bar diagram showing Primary lesions among the subjects

In the study most common lesion among Intertrigo was Vesicle and Pustule in 8.7%.

Least common primary lesion was macule.

Table 15: Foot Intertrigo – Clinical Presentation

CLINICAL	No. of Cases	PERCENTAGE
PRESENTATION		
MACERATION	83	72.2 %
SCALING	44	38.2%
DISCHARGE/EXUDATION	22	19.1%
ULCER/EROSION	16	13.9%
FISSURING	12	10.5%
CRUSTING	8	6.9%

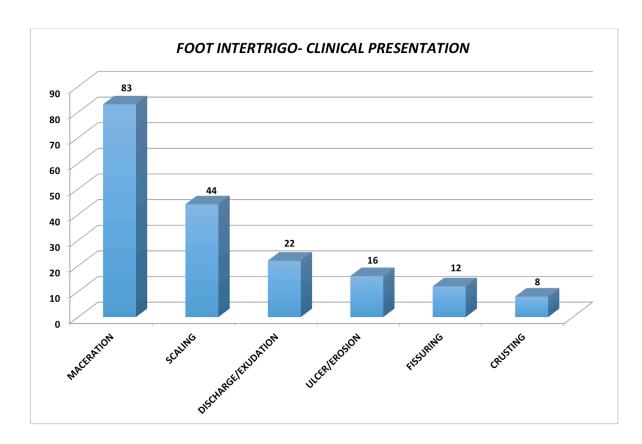


Figure 16: Distribution of Clinical Presentation in Foot Intertrigo

Most common clinical presentation was maceration seen in 83 cases(72.2%) followed by scaling in 44 cases(38.2%). Discharge/exudation was seen in 22 (19.1%), Ulcer/erosion in 16 (13.9%), Fissuring in 12(10.5%) and Crusting in 8 (6.9%) cases.

Table 16: Color of the lesions among the subjects

Color changes	No. of cases	Percentage
Erythematous	34	29.6%
White lesions	56	43.5%
Greenish discolouration	4	3.5%
Hyperpigmentation	7	6.1%

Foot Intertrigo - Colour changes seen in lesions

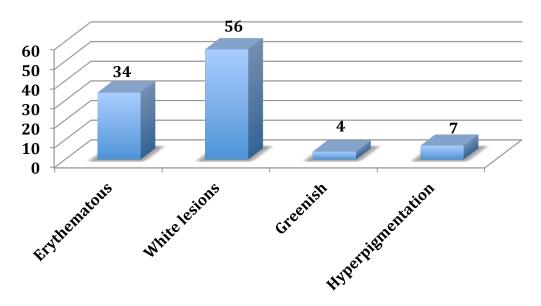


Figure 17: Bar diagram showing Color of the lesions in Foot Intertrigo

Most of the lesions were white in color in 43.5% and 29.6% were Erythematous lesions.

Greenish discolouration was seen in 4% and Hyperpigmentation in 7 %.

Table 17: Foot Intertrigo – Sites of Involvement

TOE WEB SPACE	RIGHT FOOT	LEFT FOOT	TOTAL
1 ST TOE WEB SPACE	12	15	27
2 ND TOE WEB SPACE	17	15	32
3 RD TOE WEB SPACE	45	48	93
4 TH TOE WEB SPACE	75	79	154
TOTAL	149	157	

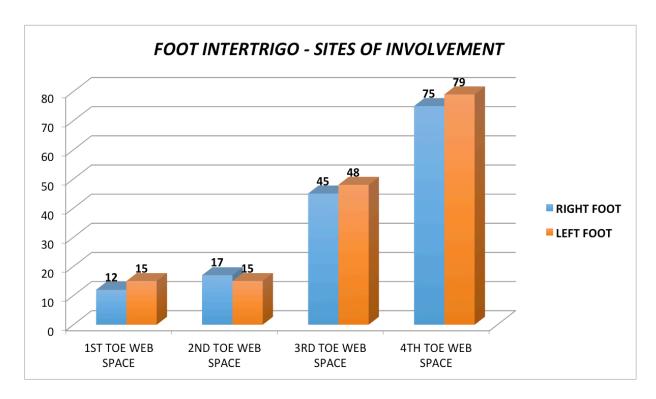


Figure 18: Foot Intertrigo- Sites of Involvement

Most common site of Involvement of foot intertrigo was the 4th Toe web space. In 98 subjects (85.2%), 4th toe web space was involved either unilateral or bilateral. Next common site was 3rd toe web space. The intertriginous lesions were extending to digitoplantar sulcus and sole in 21 cases, extending to dorsal surface in 10 cases and extending to lateral surface in 1 case. Bilateral involvement was seen in 62 subjects (53.9%) and unilateral involvement seen in 53 subjects (46.1%).

Table 18: Foot Intertrigo: Number of Toe web spaces involved

INVOLVEMENT	NUMBER OF CASES	PERCENTAGE
1 WEB SPACE	30	26.1%
2 WEB SPACES	44	38.2%
3 WEB SPACES	11	9.5%
4 WEB SAPCES	18	15.6%
5 WEB SPACES	2	1.7%
6 WEB SPACES	2	1.7%
7 WEB SPACES	1	0.8%
8 WEB SPACES	7	6.1%

Intertrigo of toe web spaces was seen in more than 1 site in 85 cases (73.9%). Intertrigo affecting 2 web spaces was commonest, seen in 44 cases (38.3%). All of the web spaces were involved in 7 cases (6.1%).

Table 19: Foot Intertrigo- KOH findings

		Frequency	Percent
	Hyphae	16	64%
KOH Mount	Yeast cells	9	36%
	Total	25	

Among the 25 subjects positive for KOH mount 64% showed hyphae and 36% showed Pseudo hyphae.

Table 20: Foot Intertrigo - Growth on fungal culture

Fungal culture		No. of Cases	Percent
Candida Species C.albicans		8	50%
	C.tropicalis	1	6.25%
Dermatophytes	atophytes Microsporum nanum		6.25%
Non Dermatophytic	A. niger	4	25%
Fungi	A.flavus	1	6.25%
Fusarium Sp.		1	6.25%
Total		16	100 %

Foot Intertrigo - Fungal Culture

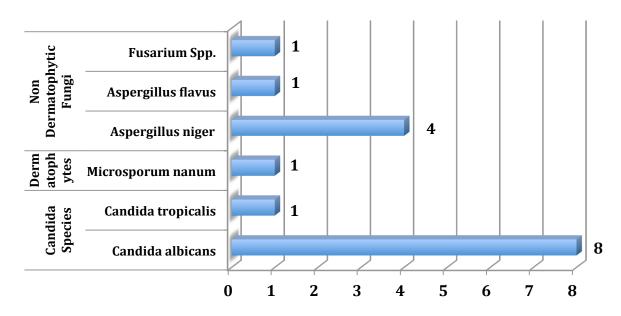


Figure 19: Foot Intertrigo – Growth on Fungal culture.

Among the 16 subjects who showed positive for Fungal culture 50% were C.albicans, 25% were A.niger and 6.5% were A.flavus, C.tropicalis, Fusarium and Microsporum nanum.

Table 21: Gram staining findings among subjects

		No. of Cases	Percentage
	Pus cells	64	55.7%
Gram's	Gram Positive Cocci	82	71.3%
staining	Gram Positive Bacilli	20	17.4%
	Gram Negative Bacilli	36	31.3%
	Gram positive Yeast cells	9	7.8%

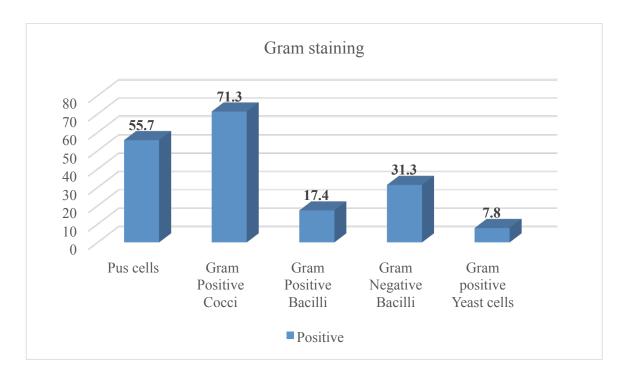


Figure 20: Bar diagram showing Gram staining findings

Gram staining showed majority were Gram positive cocci (71.3%), and 31.3% were Gram negative bacilli. Gram positive bacilli were seen in 17.4%.

Table 22: Foot Intertrigo- Growth on Bacterial Culture

BACTERIAL	No. of Cases			No. of
CULTURE	n=115			Cases
CULTURE	100	Commensal	Micrococci	18
POSITIVE			CoNS	16
		Pathogenic	Gram Positive	31
			Gram Negative	58
NO GROWTH	15			
TOTAL	115			

In total of 115 cases, Bacterial growth was seen in 100 cases, and there was no growth in 15 cases. Commensals such as micrococci were seen in 18 cases and Coagulase negative Staphylococci were seen in 16 cases. Of pathogenic bacteria 31 were gram positive and 58 cases were Gram negative.

Table 23: Bacterial pathogens isolated in Culture.

BACTERIAL	No. of	ORGANISM	No. of Cases
CULTURE	Cases		
GRAM POSITIVE	31	Methicillin Sensitive	24
		Staphylococcus aureus	
		Methicillin Resistant	4
		Staphylococcus aureus	
		Alpha Hemolytic	1
		Streptococci	
		Beta Hemolytic	1
		Streptococci	
		Enterococcus	1
GRAM NEGATIVE	58	Pseudomonas aeruginosa	14
		Acinetobacter Species	12
		Escherichia coli	10
		Klebsiella Species	9
		Enterobacter Species	7
		Proteus Species	3
		Citrobacter koserii	2
		Providencia stuartii	1

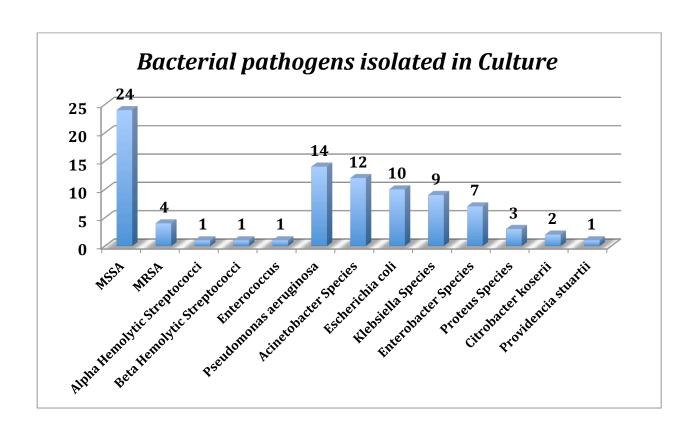


Figure 21: Foot Intertrigo Growth on Bacterial Culture

In the present study, most common bacteria isolated was MSSA which was isolated from 24 cases(20.9%). Pseudomonas aeruginosa was isolated from 14 cases (12.2%) and Acinetobacter in 12(10.4%). E.Coli was isolated in 10(8.7%), Klebsiella species in 9(7.8%), Enterobacter species in 7(6.1%) and MRSA in 4 (3.5%) cases.

Table 24: Foot Intertrigo- Mixed Infections

MIXED INFECTIONS	No. of Cases	Percentage
GPC (clusters) + GPC (chains)	1	2.9%
GNB + GPC	3	8.8%
2 or more GNB	13	38.2%
GPC + Fungal Infection	8	23.5%
GNB + Fungal Infection	9	26.5%
TOTAL	34	

In total of 34 mixed infections, infections with 2 or more Gram negative bacilli constituted about 38.2% of mixed infections. Gram positive cocci in clusters with Gram positive cocci in chains was seen only in 1 case.

Incidence of fungal infection with Gram positive bacterial infection was seen in 8 cases and Fungal with gram negative bacterial infection seen in 9 cases (26.5%).

Table 25: Final diagnosis in patients of Foot Intertrigo

		Frequency	Percent
	Mixed Toe web Infection	34	29.6 %
	Bacterial Foot Intertrigo	32	27.8 %
	Simple Foot Intertrigo	29	25.2 %
	Fungal Foot Intertrigo	8	7.0 %
Final	Contact dermatitis	6	5.2 %
diagnosis	Miscellaneous • Soft corn- 3 • Palmoplantar Psoriasis-2 • Scabies-1	6	5.2 %
	Total	115	100.0

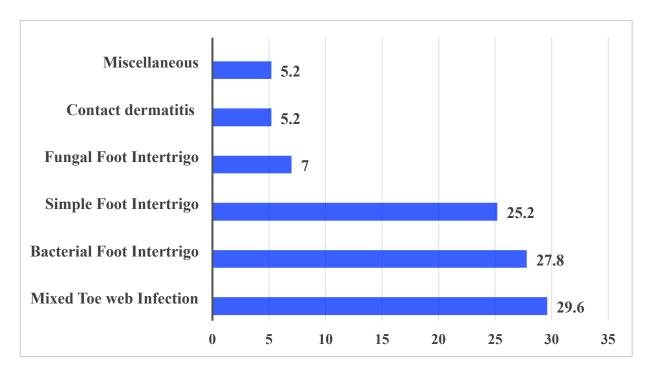


Figure 22: Bar diagram showing Final diagnosis in patients with Foot Intertrigo

Foot Intertrigo was most often due to mixed infections (29.6%), followed by bacterial (27.8%) and simple Intertrigo (25.2%). Fungal foot intertrigo was seen in 7 %.

PHOTOGRAPHS:

Figure 23: Foot Intertrigo of 3^{rd} and 4^{th} toe web spaces with erosions and maceration

Figure 24: Foot intertrigo of 3^{rd} toe web space showing white maceration

Figure 25: Foot Intertrigo of 4th toe web infection showing maceration and greenish discolouration

Figure 26: Foot intertrigo of 4th toe web space showing maceration and greenish discolouration due to Pseudomonas aeruginosa infection

Figure 27: Foot Intertrigo of 4th toe web space extending to plantar surface

Figure 28: Toe web intertrigo with crusting involving the digitoplantar sulcus

Figure 29: Toe web intertrigo affecting the 3rd and 4th toe web spaces in a case of

Hansens and Trophic ulcer

Figure 30: Foot Intertrigo affecting all 4 toe web spaces with involvement of digitoplantar sulcus

Figure 31: Bilateral foot intertrigo affecting all web spaces with fissuring

Figure 32: 3^{rd} and 4^{th} web intertrigo with pitted keratolysis

Figure 33: A case of diabetic bullae with maceration, erosion and discharge affecting 4^{th} toe web space

Figure 34: Toe web infection of the 1st toe web space with purulent discharge

Figure 35: Interdigital tinea pedis showing scaling of the 4^{th} toe web space.

Figure 36: Case of tinea pedis with extension of scaling to plantar aspect of foot- KOH showed hyphae in this case

Figure 37: Concomitant tinea corporis in the same patient.

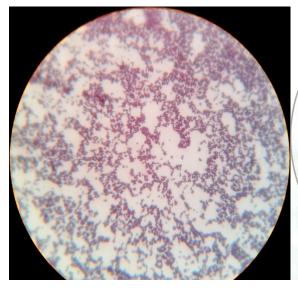


Figure 38: GPC in clusters on Grams stain

Figure 39: Staphylococcus aureus growth on blood agar



Figure 40: GNB on grams stain

Figure 41: Growth of Pseudomonas aeruginosa on MacConkey agar

Figure 42: Growth of Microscopurm nanum on SDA

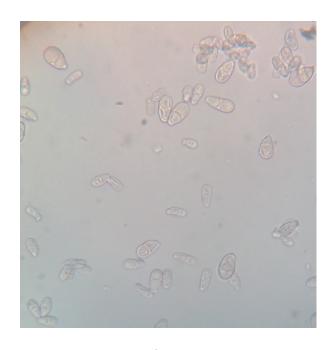


Figure 43: Microscopic picture of Microsporum nanum on LPCB mount

Figure 44: Growth of fusarium on SDA

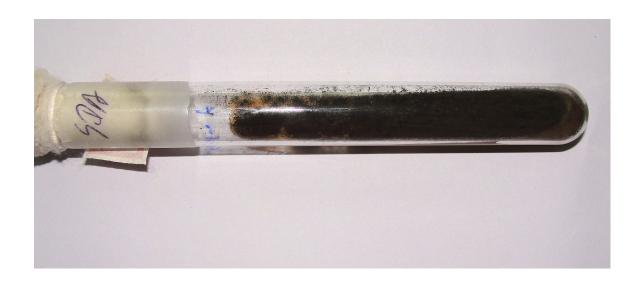


Figure 45: Growth of Aspergillus niger on SDA

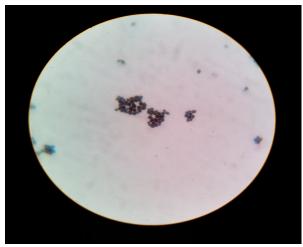


Figure 46: Gram positive budding yeast cells on gram stain

Figure 47: KOH mount showing hyphae

Figure 48: Growth of Candida tropicalis on SDA

Figure 49: Growth of Candida albicans on SDA

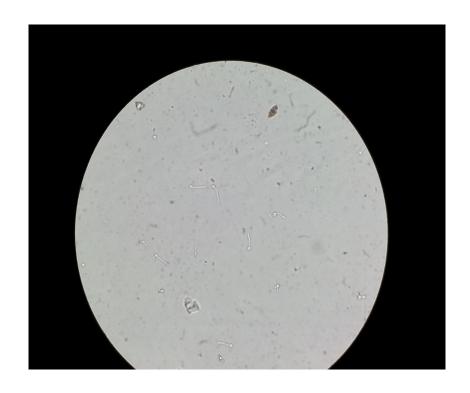


Figure 50: Germ tube formation by Candida albicans

DISCUSSION

DISCUSSION

Foot intertrigo is a relatively common and troubling disorder especially in a hot and humid weather or occluded conditions. Its etiology is variable ranging from a simple intertrigo due to various noninfectious mechanical factors to intertrigo complicated with bacterial or fungal infection. Whether infectious agents play a primary role in intertrigo or simply are common secondary agents is controversial.^{15,70}

Differential diagnosis based on a clinical features alone is difficult because the initial phase of the infection is often common to interdigital tinea pedis, candidal intertrigo, and bacterial intertrigo.^{7,8}

There are no comprehensive studies relating to microbial aetiology and predisposing factors of foot intertrigo. Hence, clinical and microbiological studies are required to assist in the selection of appropriate treatment and the prevention of important complications of foot intertrigo.

In the present study, a total 115 patients with foot intertrigo were enrolled.

Detailed history was taken; clinical examination was done along with microbiological investigations. Predisposing factors, preexisting co-morbidities and other associated conditions were enquired about and noted. The following observations are made and are compared with other similar studies.

In the present study, the most common age group affected with foot intertrigo were in age group of 41 to 50 years in 26.1% of cases, and 51 to 60 years in 20%. Mean age of the subjects was 44.71 ± 17 . This finding is similar to the observations made by

Lestringant et al.⁷¹ (45.76 years), Karaca et al.⁸ (49.6 years), Ahmed et al.⁷² (32.6 years), and Jing-Yi Lin et al.³ (59 years).

Foot intertrigo was less commonly noted in children in the present study, may be due to less exposure to the predisposing factors commonly wet conditions as reported by Ahmed et al.⁷²

In our study, a total of 57 females (49.6%) and 58 males (50.4%) were affected, indicating that there was no predilection towards either sex, however male preponderance was observed in other studies, may be due to increased use of occlusive foot wear among the males for professional and extraprofessional reasons or during sports.^{3,7} In our study, females were also almost equally affected and majority of them were housewives and maids. Exposure to wet conditions, during household work, could be the predisposing factor in these cases.

Majority of the patients affected with foot intertrigo in the present study were housewives (33.9%) similar to Ahmad et al.⁷² and Lestringant et al.⁷¹ studies. This can probably be attributed to the constant exposure to excessive moisture and irritants like soap, detergents while doing household chores such as cooking, cleaning, washing clothes and vessels.⁷²

Agriculturists (19.1%) were the second most commonly affected group in our study. In South Asian countries like India, where a lot of agriculturists still depend on conventional ways of farming without use of machinery, they are often required to keep their feet constantly immersed in water and also exposure to various irritants like mud, fertilizers, pesticides during their work, might initiate damage in the stratum corneum, which in conjunction with moisture, may trigger maceration of the toe web spaces.⁷³

Intertrigo is often a chronic disorder with an insidious onset but acute discomfort may be present when there is bacterial infection.^{4,21} In the present study, majority i.e. 77.4% of subjects had insidious onset and 22.6% had acute onset.

Since foot intertrigo lesions are usually simple, mild and asymptomatic,⁴ they are often neglected till complications arise or they develop severe symptoms secondary to either infection, inflammation or other complications. In the present study, 27.8% had foot intertrigo for < 6 months, 27% for 2 to 5 years and 11.3% had it for more than 5 years with the duration ranging from 2 weeks to 15 years. Majority of the foot intertrigo subjects who were enrolled in the study were ignorant or negligent and 22.6% of them had history of previous inadequate treatment.

In the present study most common predisposing factor was chronic exposure to wet conditions seen in 49.6% of subjects, followed by frequent use of occlusive foot wear in 19.1% of subjects, similar to the observations made by Karaca et al.⁸ and Lestringant et al.⁷¹ However exposure to wet conditions among our subjects was mostly due to occupational exposure and household chores, when compared to other studies which was secondary to attending swimming pools, public baths, saunas, and ablutions.^{8,71}

The other frequent predisposing factors seen is this study were poor hygiene in 11.3% of cases and hyperhidrosis seen in 8.7% which is similar when compared to another study. Other less frequently reported predisposing factors were deformity such as clawing of toes in 4.3% and obesity in 3.5% of subjects. Increased occlusion, stubby toes, along with warm and humid environment of toe web clefts in such individuals causes increased retention of sweat and moisture. 42,71

Individuals with foot intertrigo and co-existing comorbidities like diabetes mellitus and obesity are at increased risk of developing cellulitis. ^{4,14} In our study, type 2 diabetes mellitus was noted in 24.3% of the subjects similar to other studies. ^{71,72} In the present study, cellulitis was noted in 5 patients (4.3%). Staphylococcus aureus was isolated from the toe web lesions in 3 patients with cellulitis and Pseudomonas aeruginosa in 2 patients similar to the findings in a study by Björnsdóttir et al. ⁷⁴ Concomitant fungal infection of other body areas was seen in 25 cases (21.7%), tinea corporis being the most common, similar to Ahmed et al. ⁷² where it was observed in 25% of the cases.

Toe web space intertrigo has varied presentation, ranging from mild, asymptomatic lesions to painful inflammatory lesions with profuse malodourous discharge, maceration, and erosions. In the present study, only 60% had symptoms and remaining 40% were asymptomatic. Among the symptomatic patients, itching was the most predominant symptom seen in 36.5% of patients. Less reported complaints included pain (20%), burning sensation (13.9%), and peeling of skin or scaling (8.7%). These findings are similar to studies by Aste et al.⁷ and Jing-Yi Lin et al.³ who found burning, pain and itching as the predominant symptoms.

Bilateral toe web space involvement was more common in our study group seen in 62 cases (53.9%). Most commonly affected toe web space was the 4th toe web space seen in 98 subjects (85.21%), followed by the 3rd toe web space. These findings are in concordance with previous similar studies. ^{8,71,72}

Extension of the lesions to the digitoplantar sulcus and sole was seen in 21 cases (18.2%) similar to Aste et al.⁷

In the present study, maceration of the toe web space was the most common clinical presentation seen in 83 cases (72.2%) followed by scaling, seen in 44 cases (38.2%). Maceration of the toe web space causes damage to the stratum corneum, hence predisposing to secondary fungal and bacterial infections, which may in turn complicate simple frictional intertrigo to mixed infection of toe web spaces. 4,14 Other common findings included exudation in 19.1%, erosions in 16%, fissures in 10.5% and vesicles and pustules in 8.7% of the cases.

Whitish discolouration of lesions was seen in 56 cases (43.5%), erythema in 24 cases (29.6%), and hyperpigmentations in 6.1%. Greenish discolouration was noted in 4 cases (3.5%) and these were associated with gram negative toe web infection and 3 of them were associated with Pseudomonas infection. Lestringant et al. also observed similar association of bluish-green pigmentation, in Pseudomonas aeruginosa infection of the toe web spaces which is due to the pyocyanin and pyoverdin pigments produced by the organism. ⁷⁵

Final diagnosis was made, after obtaining the results of bacteriological and mycological studies. Based on the etiology, foot intertrigo was subdivided into the following categories:

<u>Simple intertrigo</u>: It was diagnosed when no infectious organisms were identified by either culture or direct microscopic examination or when the culture media grew skin commensals from the toe web lesions. ^{4,14,15} This was seen in 29 cases (25.2%).

<u>Bacterial intertrigo</u>: When a single bacterial pathogen was isolated from the toe web lesions, it was categorized as bacteria intertrigo. There were a total 32 Bacterial intertrigo cases (27.8%).

<u>Fungal intertrigo</u>: This was diagnosed when KOH mount showed fungal elements and/or when culture grew fungi including yeasts, dermatophytes and non-dermatotophytic fungi. This was seen in 7% of the cases.

<u>Mixed toe web infections</u>: When more than one bacteria or bacteria along with fungus, were isolated concomitantly, they were categorized as mixed toe web infections.

In our study, majority of the patients with foot intertrigo had mixed toe web infections which was seen in 34 cases (29.6%), followed by bacterial intertrigo seen in 32 cases (27.8%), simple intertrigo in 29 cases (25.2%), fungal intertrigo in 8 cases (7%), contact dermatitis in 6 cases (5.2%). Miscellaneous causes of intertrigo included 3 cases of soft corn, 2 cases of palmoplantar psoriasis where fissuring and scaling extended to involve interdigital toe web spaces and 1 case of scabies.

The mixed toe web infection rate in the literature is around 22.6% to 75% ^{7,76-78} where as frequency of mixed toe web infections in our study was 29.6%. Most common mixed infection was by combined gram negative organisms which was seen in 13 cases (38.2%) followed by mixed gram negative and fungal infection seen in 9 cases (26.5%). The most common concomitant pathogens were Acinetobacter sp. with Escherichia coli. Similarly the most common concomitant pathogen in Jing-Yi Lin et al.³ was Pseudomonas aeruginosa combined with other gram negative or gram positive bacteria,

while in the study by Karaca et al.⁸ it was dermatophytes and coagulase-negative staphylococci.

Out of the 115 cases, bacterial culture was positive in 100 cases. Among these, Micrococci were isolated in 18 cases and Coagulase-negative staphylococci in 13 cases and were categorized as skin commensals. Gram positive pathogens and gram negative pathogens were isolated in 31 (26.9%) and 58 (50.4%) cases respectively. This is in concordance with other studies where increased frequency of gram negative pathogens were isolated. Most frequently isolated pathogens in our study were MSSA (20.9%), Pseudomonas aeruginosa (12.1%) followed by Acinetobacter sp. (10.4%) and Escherichia coli (8.7%). In the study by Karaca et al, the most common pathogen was coagulase-negative staphylococci (17.9%) followed by Pseudomonas aerugenosa (16.7%). Similarly Pseudomonas aeruginosa, often together with other gram-negative bacteria or Staphylococcus aureus, was isolated as the most common etiologic agent in other studies. And Articles And Articles

Most	Present study	Karaca et al.8	Aste et al. ⁷	Ahamad et	Lestringant
common				al. ⁷²	et al. ⁷¹
isolate					
1	Staph. aureus	P.aeruginosa	P.aeruginosa	Staph.aureus	P.aeruginosa
	(24.3%)	(16.7%)	(46.4%)	(83.4%)	(26.7%)
2	P.aeruginosa	Staph. aureus	E.coli	P.aeruginosa	Coliforms
	12.2%	(11.9%)	(13.8%)	(10%)	(24.4%)
3	Acinetobacter	C.	Staph aureus	Proteus sp.	В
	(10.4%)	minutissimum	(8%)	(3.3%)	streptococcus
		(11.9%)			(6.7%)

In our study KOH was positive for fungal elements in 25 cases and out of which growth on fungal culture was seen in 64% (16/25) cases. This rate of KOH positive-culture negative frequency is in concordance with a similar study by Karaca et al.⁸ where only 41.6% of KOH positive cases grew positive fungal culture. The differences in the results of KOH examination and culture growth, may be explained by the presence or absence of infecting agent in the particular specimen examined. The culture results also depend upon, whether the nutritional and other requirements like optimum temperature for growth etc. are adequately met or not.⁷⁹ Of the 16 cases, isolated fungal growth was seen 6 cases and mixed growth of fungal along with bacterial pathogens were noted in 10 cases.

In our study, 9 candida species (7.8% of 115), 1 dermatophyte (0.8%) and 6 non-dermatophytic fungi (5.2%) were isolated. Candida albicans was the most commonly isolated fungal pathogen seen in 6.8% of cases. Among the positive fungal culture, 50% were Candida albicans, 25% were Aspergillus niger and 6.5% each were Aspergillus flavus, Candida tropicalis, Fusarium sp. and Microsporum nanum. In a similar study by Lestringant et al., ⁷¹ the predominant fungi isolated were Candida sp. (57.7%), Aspergillus sp. in 31%, Fusarium sp. in 11.1%. Dermatophytes were isolated in only 4.4% of the cases.

In concordance with our study, other similar studies have reported a low frequency of dermatophyte isolation in fungal culture^{7,8} This is probably because dermatophytes are frequently not recovered from severe cases of toe web intertrigo and,

in general, recovery rate of fungi from clinically abnormal interdigital spaces ranges from 7.5% to 61%. 42,80

An important finding in our study was the isolation of non dermatophyte moulds (NDM) like Aspergillus sp. and Fusarium sp. in pure cultures in 37.5% of all the positive fungal cultures. Though commonly considered as contaminants, they have been reported to colonize damaged tissues and cause secondary tissue destruction. ⁸¹

Also several reports in literature have described toe web intertrigo resulting from Fusarium sp. ^{51, 71, 82} in concordance with the present study.

CONCLUSION

CONCLUSION

Foot intertrigo is a chronic and troubling disorder which occurs due to a complex interplay between various local predisposing factors, host factors, bacterial and fungal organisms. It can be simple intertrigo, where only mechanical and physical factors play a role or it may be primarily or secondarily infected by various bacterial and fungal pathogens resulting in mixed toe web infections.

Clinically, although foot intertrigo can be mild and asymptomatic, it can progress to potentially life threatening complications like cellulitis. Thus, early diagnosis and prompt treatment is essential. Also, clinical manifestations can be similar in majority of the cases with maceration being the most common presentation, hence, diagnosis cannot be made based only on clinical features, making appropriate microbiological studies imperative.

Dermatophytes, although most often are responsible for initiating the damage to stratum corneum, they are not frequently isolated from the interdigital intertriginous lesions, hence patients do not respond to antifungal treatment alone. Bacterial and fungal overgrowth is imminent under suitable conditions like occlusive environment, moisture, heat, friction along with a damaged stratum corneum.

Therapeutic approaches should not concentrate solely on antifungal therapy as often prescribed by the clinicians, but should address the predisposing factors, preventive measures along with appropriate topical or systemic antibacterial and antifungal agents.

Recommendations for further work:

 Long term multi centric prospective studies are needed to evaluate the response to therapy, recurrence, long term complications associated with foot intertrigo and its management. **SUMMARY**

SUMMARY

- A total of 115 patients with clinically diagnosed foot intertrigo who presented to the department Dermatology R. L. Jalappa hospital and research centre, attached to Sri Devaraj Urs Medical College, Tamaka, Kolar between January 2013 and June 2014 were enrolled in the study.
- Detailed history was taken, thorough clinical evaluation and relevant laboratory investigations were done.
- Among 115 cases, 58 were males and 57 were females
- The youngest of study subject was 4 year old and eldest was 80 year old. Mean age in the study group was 44.71 ± 17 years. It was most common in the age group 41 to 60 years.
- Among the subjects with foot intertrigo, 39 were housewives, 22 were agriculturists and 13 skilled workers. Students, maids and unemployed subjects were 9 each. Daily wage labourers and businessmen were 8 and 6 respectively.
- ➤ Onset was acute in 26 and insidious in 89 cases.
- Duration of disease was less than 6 months in 32, 6 months to 1 year in 12, 1 year to 2 years in 27, 2 years to 5 years in 31, and more than 5 years in 13 of them.
- There were no predisposing factors noted in 23 cases. 1 predisposing factor seen in 73, 2 factors seen in 17 and 3 factors in 2 cases.
- Most common predisposing factor was exposure to wet conditions seen in 57. occlusive foot wear was noted in 22, poor hygiene in 13, hyperhidrosis in 10, foot deformity in 5, obesity and immobility in 4 each and 1 person was athlete.

- Of 115 cases, 46 were asymptomatic. Itching was most common symptom seen in
 42. Pain was noted in 23, burning sensation in 15 and scaling in 10.
- ➤ Most common associated condition was diabetes mellitus in 28 followed by superficial dermatophytosis in 22 cases. Intertrigo at other sites were seen in 11 and eczema in 10 cases. Cellulitis, a complication of Intertrigo, was seen in 5 cases.
- Maceration was the commonest morphological presentation seen in 83 cases, followed by scaling in 44, discharge or exudation in 16. Fissuring was seen in 12 and crusting was seen in 8 cases
- Foot intertrigo was bilateral in 62 and unilateral in 53 people. Most commonly affected toe web space was 4th toe web space followed by 3rd toe web space.
- ➤ Whitish discoloration of lesions as seen in 56 cases, erythema in 34 cases, hyperpigmentation was seen in 7 people, greenish discoloration in 4.
- ➤ On KOH mount, 25 samples were positive for KOH mount of which 16 showed hyphae and 9 showed yeast cells.
- Fungal culture showed growth in 16 cases of which Candida albicans was isolated in 8 cases, Aspergillus niger was isolated in 4 cases and Candida tropicalis, Microsporum nanum, Aspergillus flavus and Fusarium species were isolated in 1 sample each.
- ➤ Bacterial culture was positive in 100 cases. Commensals like Micrococci and CoNS were excluded. Gram positive bacterial pathogens were isolated in 31 cases and Gram negative in 58 cases. Most commonly isolated organism was MSSA in 24 cases. P.aeruginosa was isolated in 14 cases, Acinetobacter in 12, E coli in 10

- and Klebsiella spp. in 9.
- In total of 34 mixed infections, concomitant infection with two or more gram negative organisms constituted 13 cases of mixed infections. Gram positive with Gram positive infection was seen only in 1 case.
- ➤ Concomitant infection of fungal with gram positive bacteria was seen in 8 cases and fungal with gram negative bacteria seen in 9 cases.
- Most common type of Intertrigo was **mixed toe web intertrigo** seen in 34 cases, followed by **single organism bacterial intertrigo** in 32 cases. **Simple intertrigo was seen in** 29 cases, **isolated fungal infection** was seen in 8 cases, **contact dermatitis** was seen in 6 cases. Miscellaneous causes of intertrigo included 3 cases of **soft corn**, 2 cases of **palmo-plantar psoriasis**, 1 case of **scabies**.

BIBLIOGRAPHY

- Clark RAF, Hopkins TT. The other eczemas. In: Moschella SL, Hurley HJ, editors.
 Dermatology. 3rd ed. Philadelphia: W.B. Saunders Company; 1992. p.485-489.
- Schalock PC, Sober AJ. Management of Intertrigo and Intertrigenous dermatoses. In: Goroll AH, Mulley AG eds. Primary care medicine: Office evaluation and management of the adult patient. 6th ed. Philadelphia: LWW; 2009
- 3. Lin JY, Shih YL, Ho HC. Foot bacterial intertrigo mimicking interdigital tinea pedis.

 Chang Gung Med J 2011;34:44-49
- 4. Janniger CK, Schwartz RA, Szepietowski JC, Reich A. Intertrigo and common secondary skin infections. Am Fam Physician. 2005 Sep 1; 72(5):833-8
- 5. Janik MP, Heffernan MP. Yeast Infections: Candidiasis and Tinea(Pityriasis)
 Versicolor In: Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Lefell DJ
 eds. Fitzpatrick's Dermatology in General Medicine. 7th Ed. New York: Mc Graw-Hill;2008. p.1822-30
- 6. Valia RG. Eczema. In: Valia RG, Valia AR eds. IADVL Textbook of Dermatology. 3rd Ed. Mumbai: Bhalani Publishing House; 2010. p.490-526.
- Aste N, Atzori L, Zucca M, Pau M, Biggio P. Gram-negative bacterial toe web infection: A survey of 123 cases from the district of Cagliari, Italy. J Am Acad Dermatol 2001;45:537-541
- 8. Karaca S, Kulac M, Cetinkaya Z, Demirel R. Etiology of foot intertrigo in the district of Afyonkarahisar, Turkey: A bacteriologic and mycologic study. J Am Podiatr Med Assoc 2008; 98:42-44
- 9. Sibbald RG, Kelly J, Kennedy-Evans KL, Labrecque C, Waters N. A Practical approach to the prevention and management of Intertrigo. Wound care Canada –

- Supplement. 2013,11(2): 4-19
- Intertrigo. Dictionary.com. Collins English Dictionary Complete & Unabridged 10th
 Edition. HarperCollins Publishers. http://dictionary.reference.com/browse/intertrigo
 (16.accessed: October 06, 2014).)
- 11. Greenbaum SS, Klauder JY. Yeast Infections Of The Skin: Report Of Cases And Of Studies On The Cutaneous Yeasts. Arch Derm Syphilol. 1922; 5(3):332-344
- 12. Sequeira JH. Diseases of the skin. 3rd ed..London: J & A Churchill; 1919;Chapter.Intertrigo; p.53-55
- 13. Mistiaen P, Van Halm-Walters M. Prevention and treatment of intertrigo in large skin folds of adults: A systematic review. BMC Nurs. 2010;9:12
- 14. Kalra MG, Higgins KE, Kinney BS. Intertrigo And Secondary Skin Infections. Am Fam Physician. 2014;89(7):569-573.
- 15. Maibach HI, Aly R. Bacterial Infections of the skin. In: Moschella SL, Hurley HJ, editors. Dermatology. 3rd ed. Philadelphia: W.B. Saunders Company; 1992.p.710-50.
- 16. Lisa May. Disorders of the groin and skin folds In: Tintinalli JE, Gabor D, Md.
 Stapczynski JS eds. Emergency medicine- A comprehensive study guide. Chapter 240.
 6th Ed. McGraw-hill.2003
- 17. Yosipovitch G, DeVore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56(6):901-916
- 18. Seale P, Lazar MA. Brown fat in humans: turning up the heat on obesity. Diabetes. 2009;58(7):1482-4
- 19. Weintrob AC, Sexton DJ. Clinical manifestations, diagnosis, and management of diabetic infections of the lower extremities. In: UpToDate, Post TW (Ed),

- UpToDate, Waltham, MA. (Accessed on October 2, 2014.)
- 20. Derm Net NZ, from Newzealand Dermatological Society. "Intertrigo" rash in body folds. Dermnetnz.Org/ dermatitis; intertrigo, Last updated 24th February 2007.
- 21. Seldon ST. Intertrigo. Emedicine. Accesed online October 3,2014, at: http://emedicine.medscape.com/article/1087691
- Thapa DM. Textbook of Dermatology, Leprology and Venereology 3rd ed.
 Gurgaon; Elsevier; 2009. Chapter 8. Fungal Infections; p.70-94
- 23. Bunker CB, Neill SM, The Genital, Perianal and Umbilical Regions In: Burns T, Breathnach S, Cox N, Griffiths C eds. Rook's Textbook of Dermatology, 8th ed. Wiley-Blackwell Publications, Oxford. UK. Chapter 71. 2010.p.71.1-71.101
- 24. Klenk AS, Martin AG, Hoffernan MP. Yeast infections: Candidiasis Pityriasis (tinea) versicolor. In: Fitzpatrick's Dermatology in General medicine, New York: McGraw Hill; 2003.p. 2006
- Parker ER. Candidal Intertrigo. In: UpToDate, Post TW (Ed), UpToDate, Waltham,
 MA.
- 26. Hay RJ, Ashbee HR. Mycology In: Burns T, Breathnach S, Cox N, Griffiths C eds. Rook's Textbook of Dermatology, 8th ed. Oxford. UK: Wiley-Blackwell Publications; Chapter 36. 2010.p.36.1-93
- Sobera JO, Elewski BE. Fungal Diseases. In: Dermatology, Bolognia JL, Jorizzo JL,
 Rapini RP Eds. Mosby, London 2003. p.1171.
- 28. James WD, Berger TG, Elston DM. Andrews Diseases of the skin. 11th ed. Noida: Elsevier Saunder; 2009. Chapter 15, Diseases resulting from fungi and yeasts; p.287-321

- 29. Habif TP, Clinical Dermatology 4th ed. New Delhi:Elsevier; 2007. Chapter 13, Superficial Fungal Infections; p.439-451
- 30. Sundaram SV, Srinivas CR, Thirumurthy M. Candidal intertrigo: treatment with filter paper soaked in Castellani's paint. Indian J Dermatol Venereol Leprol. Sep-Oct 2006;72(5):386-7
- 31. Guitart J, Woodley DT, Intertrigo: A practical approach. Compr Ther 1994; 20: 402-9.
- 32. Hainer BL. Dermatophyte infections. Am Fam Physician 2003, 67:101-108.
- 33. Hirschmann JV, Raugi GJ: Pustular tinea pedis. J Am Acad Dermatol 2000, 42:132-133.
- 34. Leyden JJ, Kligman AM: Interdigital athlete's foot: new concepts in pathogenesis. Postgrad Med 1977, 61:113-116.
- 35. Johnson RA, Wolff K, Suurmond D: Fungal Infections of the Skin and Hair. Color Atlas and Synopsis of Clinical Dermatology Common and Serious Diseases 4th edition. Darlene C, Ramos EM, John MM. eds. NewYork: McGraw Hill Medical Publishing Division; 2001. p.684-707.
- 36. Verma S, Heffernan MP. Superficial Fungal Infection: Dermatophytosis,
 Onychomycosis, Tinea Nigra. In: Wolff K, Goldsmith LA, Katz SI, Gilchrest BA,
 Paller AS, Lefell DJ eds. Fitzpatrick's Dermatology in General Medicine. 7th Ed. New
 York: Mc Graw-Hill; 2008. p.1807-21
- 37. Schwartz RA. Gram-negative toe web infection. emedicine Accessed online October 3, 2014, at: http://emedicine.com/derm/topic835.htm.

- 38. Honig PJ, Frieden IJ, Kim HJ, Yan AC. Streptococcal intertrigo: an underrecognized condition in children. pediatrics 2003;112(pt 1):1427-9
- 39. Wojnarowska F, Venning VA. Immuno Bullous Disorders In: Burns T, Breathnach S, Cox N, Griffiths C eds. Rook's Textbook of Dermatology, 8th ed. Oxford. UK:Wiley-Blackwell Publications; Chapter 40. 2010. p.40.1-40.58
- 40. Hussain Z, Cohen PJ, Schwartz RA, Lambert WC. Flexural and extensoral eruptions in dermatologic disease. Clinics in Dermatology. 2011(29):p.195-204
- 41. Singh G, Kaur V, Singh S. Bacterial Infections In: Valia RG, Valia AR eds. IADVL Textbook of Dermatology. 3rd Ed. Mumbai: Bhalani Publishing House; 2010 p.223-51
- 42. Al-Fares MM, Al-Fouzan AS, Nanda A. Microbial Ecology of Interdigital infection of toe web spaces and their management. The Gulf Journal of Dermatology and Venereology. Apr 2002 Vol.9 (1): p.10-23
- 43. Leyden JJ, Klingman. Interdigital athlete's foot. Interaction of dermatophytes and resident bacteria Arch Derm 1978:114:1466-72
- 44. Leyden JJ, James WD. Staphylococcus aureus infection as a complication of isotretinoin therapy. Arch Dermatology 1987;123:606-8
- 45. Aly R, Maibach HI. Aerobic microbial flora of interdiginous skin. Appl.Environm-Microbiology. 1977;38:97-100
- 46. Fredricks DN. Microbial Ecology of Human Skin in Health and Disease. Journal of Investigative Dermatology Symposium Proceedings; 2001 (6):167-169
- 47. Marple R R, Klingman AM. Growth of bacteria under adhesive tapes. Arch Derm.1989;99:107-10

- 48. Al Hasan M, Fitzgerald SM, Saoudian M, Krishnaswamy G. Dermatology for practicing allergist: Tinea pedis and its complications. Clinical and Molecular Allergy 2004, 2(1):5. doi:10.1186/1476-7961-2-5
- 49. Weinberg AN, Swarts MN. Gram-negative coccal and bacillary infections. In: Fitzpatrick TB, Eisen AZ, Wolff K, et al, editors. Dermatology in general medicine: textbook and atlas. Vol 2. 3rd ed. New York: McGraw-Hill; 1987. p. 2121-7.
- 50. Neubert U, Braun-Falco O. Maceration of the interdigital spaces and gram-negative infection of feet. Hautarzt 1976;27:538-43.
- 51. Romano C, Presenti L, Massai L. Interdigital intertrigo of the feet due to therapyresistant Fusarium solani. Dermatology 1999;199:177-9.
- 52. Aly R. Microbial Infections of Skin and Nails. In: Baron S. ed. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 98. Available from: http://www.ncbi.nlm.nih.gov/books/NBK8301/
- 53. Leyden JJ. Progression of interdigital infections from simplex to complex. J Am Acad Dermatol 1993;28:S7-S11.
- 54. Gayle D. Fridling M, DERMATOPHYTOSIS OF THE FEET. Dermatologic Clinics.1996 Jan: 14(1):33-40.
- 55.Leyden JL. Tinea pedis pathophysiology and treatment. J Am Acad Dermatol. 1994 Sep;31(3):S31-3.
- 56.Kates SG1, Nordstrom KM, McGinley KJ, Leyden JJ.Microbial ecology of interdigital infections of toe web spaces. J Am Acad Dermatol. 1990 Apr;22(4):578-82.

- 57. Hope YM, Clayton YM, Hay RJ, Noble WC, Elder-Smith JG. Foot infection in coal miners: a reassessment. Br J Dermatol 1985;112:405-13.
- 58. Silvestre JF, Betlloch MI. Cutaneous manifestations due to Pseudomonas infection.

 Int J Dermatol 1999;38:419-31.
- Noble WC. Gram-negative bacterial skin infections. Semin Dermatol 1993;12:336 41.
- 60. James WD, Berger TG, Elston DM. Andrews Diseases of the skin. 11th ed. Noida: Elsevier Saunder; 2009. Chapter 14, Bacterial Infections; p.247-286
- 61. M.L. Morales-Trujillo, R. Arenas, and S. Arroyo.Interdigital Erythrasma: Clinical, Epidemiologic, and Microbiologic Findings. Actas Dermosifiliogr. 2008;99:469-73
- 62. Wilkinson SM, Beck MH. Contact Dermatitis: Irritant. In: Burns T, Breathnach S, Cox N, Griffiths C eds. Rook's Textbook of Dermatology, 8th ed. Oxford. UK: Wiley-Blackwell Publications; Chapter 25. 2010. p 25.1-25.26
- 63. Burns DA. Diseases Caused by Arthropods and Other Noxious Animals In: Burns T, Breathnach S, Cox N, Griffiths C eds. Rook's Textbook of Dermatology, 8th ed. Oxford. UK:Wiley-Blackwell Publications; Chapter 38. 2010. p.38.1-38.61
- 64. Lookingbill & marks' Principles of dermatology James G Marks Jr, Jeffery J Miller 4th edition Chap 11, Inflammatory papules pg-157-169
- 65. DeLauro TM, Delauro NM. Corns and Calluses In: Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Lefell DJ eds. Fitzpatrick's Dermatology in General Medicine. 7th Ed. NewYork: Mc Graw-Hill;2008. p.871-2
- 66. Waisman M. Interdigital psoriasis ('White psoriasis'). Arch Dermatol 1961;84:733-8.
- 67. Mommer JMR, Seyger MMB, Van der Vluten CJ, Van de Kerkhof PCM. Interdigital

- psoriasis (psoriasis alba): Renewed attention for a neglected disorder Journal of the American Academy of Dermatology. 2004 Aug;51(2): 317–8
- 68. Lio PA, Kaye ET. Topical Antibacterial Agents. Infect Dis Clin N Am 2009;23: 945–963
- 69. Winn Jr W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, et al. Introduction to microbiology, chapter 1. In: Koneman's colour atlas and textbook of diagnostic microbiology. 6th ed. Philadelphia, USA: Lippincott Williams and Willkins; 2006. p.10-39.
- 70. Mistiaen P, Poot E, Hickox S, Jochems C, Wagner C. Preventing and treating intertrigo in the large skin folds of adults: a literature overview. Dermatol Nurs. Feb 2004;16(1):43-6, 49-57
- 71. Lestringant GG, Saarinen KA, Frossard PM, et al. Etiology of toe-web disease in Al-Ain, United Arab Emirates: bacteriological and mycological studies. East Mediterr Health J. 2001;7:38-45
- 72. Ahmad S, Aman S, Hussain I, Haroon TS, A Clinico-etiological study of toe web fungal infection. Journal of Pakistan Association of Dermatologists 2003; 13:62-66
- 73. Shenoi SD, Davis SV, Rao S, Rao G, Nair S. Dermatoses among paddy field workers
 A descriptive, cross-sectional pilot study. Indian J Dermatol Venereol Leprol
 2005;71:254-8.
- 74. Björnsdóttir S, Gottfredsson M, Thórisdóttir AS, Gunnarsson GB, Ríkardsdóttir H, Kristjánsson M, et al. Risk factors for acute cellulitis of the lower limb: a prospective case-control study. Clin Infect Dis. Nov 15 2005;41(10):1416-22.

- 75. Kaya TI, Delialioglu N, Yazici AC, Tursen U, Ikizoglu G. Medical pearl: blue underpants sign a diagnostic clue for Pseudomonas aeruginosa intertrigo of the groin. J Am Acad Dermatol 2005; 53:869-71
- 76. Amonette RA, Rosenberg EW. Infection of toe webs by gram-negative bacteria. Arch Dermatol 1973;107:71-3.
- 77. Eaglstein NF, Marley WM, Marley NF, Rosenberg EW, Hernandez AD. Gramnegative bacterial toe web infection: successful treatment with a new third generation cephalosporin. J Am Acad Dermatol 1983;8:225-8.
- 78. Abramson C. Athlete's foot caused by pseudomonas aeruginosa. Clin Dermatol 1983;1:14-24.
- 79. Singh KA, Srivastava KS. A clinico-cycological study on tinea pedis at Ranchi.Indian J Dermatol Venereol Leprol 1994;60:68-71
- 80. Ajello LC. Natural history of dermatophytes and related fungi Mycopath. Mycol Appl 1974;53:93
- 81. Hay RJ, Moore M. Mycology. In: Champion RH, Burton JL, Burns DA, Breathnach SM. Textbook of Dermatology. 6th ed. Oxford: Blackwell Science Ltd.; 1998. p.1277-1377
- 82. Romano C, Gianni C. Tinea pedis resulting from Fusarium spp. International Journal Of Dermatology 2002;41:p.360-362

ANNEXURES

PROFORMA

PROFORMA	Date:
Name:	Date.
Age:	OP/IP no:
Sex:	
Address:	
Occupation:	
Presenting complaints and duration:	
Skin lesions	
 Erythema/redness 	
 Itching 	
• Burning	
• Pain	
 Discharge 	
 Constitutional symptoms 	
• Others	
History of presenting illness:	
SKIN LESIONS	
Flat/Elevated	
Onset: Sudden/Insidious	
Progression: Rapid/Gradual	
 Initial site of onset 	
• Skin lesions anywhere else on the body	
 Aggravating/Predisposing factors: 	
• Trauma	
HyperhidrosisType of footwear:	
Type of footwear.Frequent bathing habits	
 Swimming pool /common baths 	
 Exposure to wet conditions 	
Poor hygiene	
Athletic or recreational activities	
 H/O Immobility of limbs 	
Splints / brace / artificial limbs	
Relieving factors	
 Other Associated diseases: 	
TDEATMENT HISTORY Tonical	Systomic
TREATMENT HISTORY: Topical:	Systemic:

FAMILY HISTORY: H/O fungal infections in contacts

PAST HISTORY: H/O similar complaints in the past

PERSONAL HISTORY:

GENERAL PHYSICAL EXAMINATION:

BUILT: well/moderate/poor NOURISHMENT: well/moderate/poor OTHERS: Pallor / icterus / clubbing / cyanosis / Pedal edema / Lymphadenopathy

Nails:

Mucous membranes:

CUTANEOUS EXAMINATION:

■ **SITE-** Toe web spaces only: 1st 2nd 3rd 4th Unilateral/Bilateral

Extension to dorsum

Extension to plantar surface

PRIMARY LESIONS-

Macule Vesicle
Papule Bulla
Plaque Pustule

SECONDARY CHANGES

Scaling Exudation
Maceration Crust

Erosions/Ulcer

MORPHOLOGY

Borders- well defined/ ill defined

Color- Erythematous / Pigmented / White

- ANY DEFORMITIES OF FOOT / CROWDING OF TOES
- OTHER CUTANEOUS LESIONS ELSE WHERE:

SYSTEMIC EXAMINATION:

PROVISIONAL DIAGNOSIS:

INVESTIGATIONS:

- RBS
- WOOD'S LAMP EXMN
- KOH EXAMINATION
- GRAM STAIN

 FUNGAL CULTURE 	
FINAL DIAGNOSIS:	
Consent:	
I,, h and possible interventions and investigat language I fully understand.	lave been explained the need for the study cions necessary by the doctor in the
I understand that my photographs or deta published at a later date. I willfully give co	ails may be used in the study, which may be onsent to be a part of the study.
Date	Signature

BACTERIAL CULTURE

KEY TO MASTER CHA	ART							
Sex	M	Male	Complaints	AS	Asymptomatic	Secondary lesion	s M	Maceration
	F	Female		1	Itching		S	Scaling
				В	Burning		ER	Erosion
OCCUPATION	HW	House wife		P	Pain		DC	Discharge
	AGRI	Agriculturists		S	Scaling		CR	Crusting
							FZ	Fissuring
ONSET	Α	Acute					U	Ulcer
	1	Insidious	Associated Disease	DM	Diabetes mellitus		EX	Exudate
				T.Corporis	Tinea Corporis	Borders	WD	
Predisposing Factors	s HH	Hyperhidrosis		T.Pedis	Tinea Pedis		ID	
	PH	Poor Hygiene		T.Cruris	Tinea Cruris			
	ОВ	Obesity		CD	Contact Dermatitis	colour	WH	white
	W	Wet conditions		CICD	Cumulative irritant contact dermatitis		ERY	erythema
	IM	Immobility		HKD	Hyperkeratotic Dermatoses		GR	Green
	OF	Occlusive footwear					HP	Hyperpigmentation
Prior Treatment	ТАВ	Topical antibiotic	Site	L1	Left 1st toe web space			
	TAF	Topic antifungal		L2	Left 2nd toe web space	кон	Н	Hyphae
	TS	Topical steroid		L3	Left 3rd toe web space		YC	Yeast cells
	OAB	Oral antibiotics		L4	Left 4th toe web space			
	AM	Alt Medicine		R1	Right 1st toe web space	Gram stain	PC	Pus cells
				R2	Right 2nd toe web space		GPC	Gram positive cocci
Past History	DM	Diabetes Mellitus		R3	Right 3rd toe web space		GNB	Gram negative bacilli
	SC	Similar complaints		R4	Right 4th toe web space		GPB	Gram Positive bacilli
	HRFT	Hansens released from treatment		XPS	Extending to plantar surface			
	HMDT	Hansens on MDT		XDS	Extending to Dorsal surface			
			Primary Lesions	MC	Macule			
				PL	Plaque			
				PP	Papule			

PP VS

PU

BL

Vesicle

Pustule

Bullae

											НОРІ	
SI No ₄ Name	Sex	Age	OP/IP Number	Occupation	Onset	Predisposing	Treatment prior	Past history	Complaints	Duration(mth)		Associated disease
1 Kadar Pasha	М	60	849035	Shop keeper	ı	HH, PH			AS	6	Erythrasma	L4
2 Manjunath	М	32		Electrician	I	IM	TAB,OAB	DM	В	12	DM,LCV	L4 R4
3 Sugunamma	F	63	837056	HW	I	W	AM	SC	I	24		L3 L4 R3 R4
4 Shankrappa	М	38	895282	AGRI	_	W			AS	72	LDS,STASIS DERMATITIS	R3
5 Suresh kumar	М	30	895582	PRIEST	_	W			AS	4	T.corporis	R4
6 MANJULA DEVI	F	50	899940	HW	_	W	TAF	DM	В	84	DM	L3 L4 R3 R4
7 SWARNA	F	44	899872	HW	_				В	36	HTN, SJS-TEN	L3 L4 R3 R4
8 GOWRAMMA	F	45	900148	HW	ı	w			AS	18		R2 R3 R4
9 VENKATARATHNAMM	F	29	901819	MAID	ı	w			AS	24		L4 R4
10 SUBBANNA	М	42	902890	AGRI	Α	w	TAF	SC	I, S	6	T.CORPORIS PEDIS	L4 R4
11 RAMAKKA	F	65	877007	HW	1	PH, IM		CA.	AS	30		L4
12 NARAYANA SWAMY	М	80	907857	AGRI	1			DM	AS	60	LIPDERMATOSCLEROSIS DM	L4 R4
13 SUNDAR RAJ G	М	75		RETIRED	ı				AS	36		L4 R4
14 SHANKAR NARAYAN	М	52	871106	AGRI	ı	w	TAF	sc	ı	8	T.CORPORIS, CRURIS, PEDIS	L3 L4 R3 R4
15 SHARADA IYER	F	47	845130	TEACHER	ı	w	TAF	DM,SC	I	120	DM	L4 R4
16 VENKATARATHNAM	М	66	916217	AGRI	ı	W, FD		DM	I	48	DM	L4
17 RAVINDRA BABU	М	35	916318	AGRI	Α				I	0.5		L2 L3 L4 R2 R3 R4
18 KARTHIK REDDY	М	21	767202	STUDENT	ı	OB, OF			Р	2		L1
19 IQBALUNISSA	F	58	K5342	HW	ı	OB, W		DM	AS	12	DM	L1
20 SYEDA KUBRA	F	27	782764	HW	ı				Р	18		L3 L4 R3 R4
21 NIRMALA BAI	F	42	874869	HW	ı	w	TAF		AS	24	HKD	R 3 R4
22 JAYAMMA	F	58	919468	HW	ı	PH, W	AM, TAB		AS	8	PARONYCHIA	L3 L4 R3 R4
23 DR.KUMAR	М	40		DOCTOR	I	OF	TAF		AS	1		R4
24 NARASIMHA N	М	38	924450	AGRI	I	w	TCS		AS	12	STASIS DERMATITIS	L4 R4
25 ADINARAYANA SWAN	М	85	929261	RETIRED	I	IM, W			I	18	INFECTED ECZEMA	L4 R4
26 SATISH R	М	39	930062	TEACHER	I	OF, HH			Р	12		L4 R4
27 VEERABHANDRAIAH	М	47	900133	AGRI	I	W			Р	24	HKD	L3 L4 XPS
28 SHYAMALA T V	F	23	931070	HW	I	w			I	19		L3 L4 R3 R4
29 VENKATARAJU	М	24	F	ROFESSIONA	I	OF,	TAF		ı	26	T.PEDIS	R1 R4
30 BHAGYALAKSHM	F	40		HW		w			AS	24		L3 L4 R3 R4
31 SHYLAJA	F	26	934836	STUDENT	I	OF,			ı	24		L3 L4 R3 R4
32 POORNIMA	F	14		STUDENT	I	OF, HH			AS	5		L4 R4
33 NARAYANAPPA	М	60	925256	AGRI	ı	PH		HRFT	ı	36	TROPHIC ULCER	L3 L4 R3
34 NARAYANA SWAMY E	М	45	942108	AGRI	ı		TAF	DM	AS	18	STASIS DERMATITIS, DM	R3
35 PADMAMMA	F	30	945923	MAID	ı	W			I		T.CORPORIS	R3 R4

36 AYAZ PASHA	М	28	945936	MENT WORK	ı			SC	l l	12	INFECTED ECZEMA	L3 L4 R3 R4 XDS
37 RATHNAMMA	F	50	946659	HW	Α	W			I	7	DLE T.PEDIS	R4 XPS XDS
38 CHOWDAMMA	F	60	939160	HW	ı	W		SC	AS	36	ONYCHOMYCOSIS	LL1 L2 L3 L4 R1 R2 R3 R4
39 KRISHNAPPA	М	70	947445	AGRI	ı	W		HRFT	AS	48		L4
40 PRAMILA	F	35	K48011	HW	ı	W	TAF		AS	24		R4
41 MUNISHWARAMMA	F	50	946956	MAID	ı	w			AS	24	FINGER WEB INTERTRIGO,CICD	L4 R4
42 AMBAREESH	М	26	948617	WAITER	ı	W, OF			I	120	HKD	L4 R4 X SOLE
43 KRISHNAMM	F	68	947304	HW	ı				ı	60	XEROSIS	L4
44 VENKATESH MURTHY	М	56	952307	AGRI	ı	W			I	180	ONYCHOMYCOSIS	L3 L4 R3 R4
45 SRIDEVI B P	F	53	952802	HW	ı	w			I, S	60	PSORIASIS	R2
46 SRIRAMAPPA	М	57	952841	AGRI	ı			HTN	i	12	T.CORPORIS, T.FACIAE, FINGER WEB INTERTRIGO,HTN	R2 XPS
47 VENKATESHAIAH	М	42	953834	MENT WORK	ı	w	AM		ı	40	T.CRURIS, CD	L4 R4
48 NAGARAJ	М	53	957593	AGRI	ı			DM	AS	120	DM, CELLULITIS	R3 R4
49 ANANDA KUMAR	М	47	930425	PRIEST	ı	W, OF			AS	120	•	L4 R3
50 PARVATHAMMA	F	52	955104	HW		W			AS	48		L4 R4
51 PADMA	F	65	963116	HW	ı	w		HTN	ı	39	STASIS DERMATITIS	L3 L4 R 1 R2 R3
52 SHANAZUNISSA	F	48	963240	HW	Α	PH	TAF,TCS		I, S	1	T.CORPORIS	L3 L4
53 PADMAVATHI	F	48	886241	HW	Α	w			P	2	DIABETES-NEW	R4
54 NETHRA M	F	20	971959	HW	Α	w			ı	1	CICD	L1 L2 L3 L4 R1 R2 R3 R4 X PS
55 SINDHU S	F	37	974260	HW	Α	w			P, B, I	6		R3 R4 XDS
56 BEERANNA	М	59	976161	POLICE	ı	OF		HTN	P	120	HTN	L4 R4
57 RUKMANGADHA	М	30		BUSINESS	ı	OF, HH			AS	126		L4 R4
58 NAYEEM TAJ	F	42	980686	HW	ı	PH	TAF		ı	18	T.CORPORIS, T.PEDIS(INTERDIGITAL)	L1 L2 L3 L4 R1 R2 R3 R4 X PS XDS
59 SAVITHRAMMA	F	50	978181	MAID	Α			DM	AS		DM BL	L2 L3 L4 X DS
60 NARAYANA SWAMY	М	45	942502	DRIVER	1	OF		DM	AS	24	LIPDERMATOSCLEROSIS DM	R3
61 GOPAMMA	F	56	981790	HW	Α			DM	AS	3	DM	L4 R4 X DS
62 JEEVENDRA	М	25	964389	JNEMPLOYED	1	W, PH		MRtd	B, P	24	FINGER WEB INTERTRIGO, MR	L1 L2 L3 L4 R1 R2 R3 R4 X PS
63 VENKATA REDDY	М	60	983869	AGRI	ı	W			AS	18	·	L4 R4
64 SUBRAMANI	М	40	986057	MENT WORK	ı	W		HRFT	AS	60	HANSENS-RFT, TROPHIC ULCER	R1 R2
65 VENKATARAMANAPP	М	86	K5687	RETIRED			TAF	DM,SC	P, F, SWELLING	0.2	DM, CELLULITIS	L3 L4
	F	30	980283	HW	Α			DM	В	3	GESTATIONAL DM	R4
67 MD MUNAWAR	М	60	980652	TIRED TEACH	ı	OF		DM	AS	36	DM, PLANTAR KERATODERMA	L1 L2 L3 L4 R1 R2 R3 R4 X PS
68 GANGAMMA	F	32	989856	HW	ı	W			AS	12		L4 R3 R4
69 SHASHIKALA	F	37	989803	TEACHER	ı	W, HH		DM	ı	24	FINGER INTERTRIGO, DM	L3 L4
70 GOWRAMMA	F	38	814450	MAID	ı	W		DM	AS	60	DM, FINGER WEB INTERTRIGO	L3 L4 R4
71 LAKSHMAIAH	М	80	982480	AGRI	ı				ı	72	SEBORHOEIC KERTOSIS	L3
72 BORE GOWDA	М	46	989190	CLERK	ı	OF		DM	I, B		DM	L3 L4 R4
73 PEDDA REDDY	М	35	990775	AGRI	I	w			ÁS	24	CORN	L4
74 KRISHNAMMA	F	38	824397	MAID	I	w			AS	40	T.CRURIS, FZ FEET	L1 XPS
75 GIRIJA	F	27	991124	HW	I	нн	AM		AS		CD	L4 R4
76 RAMAPPA	М	60	991574	RETIRED	ı	FD		HMDT	AS	40	HANSENS ON MDT, TROPHIC ULCER	L1 L3
77 RATHNAMMA	F	60	991575	MAID	I	W			AS	48	PHN	L4 R4

78 HEM.	ANT RAO	М	13	992487	STUDENT	Α	OF			I	1	T.PEDIS	L2 L3 L4 XPS
79 ANUS	SHA	F	18	992730	STUDENT	Α	OF, HH	TAF		В, Р	1	PARONYCHIA	R4
80 LEEL	AVATHI	F	45	970800	MAID	Α	W	TAF		I, S	2	T.CORPORIS PEDIS	L3 L4 R3 R4 XPS
81 CHAN	NNAMMA	F	56	992070	HW	- 1	W			P, I	36	NEW DM, INGUINAL INTERTRIGO	L3 L4 R3 R4
82 PREM	MAKUMARI	F	56	994654	HW	Α	PH			P	6	INGUINAL INTERTRIGO	L3 R3 R4
83 JYOT	HI MARY KURIYA	F	22	965957	STUDENT	ı	OF			I, S	24	CICD	L1 R1 X PS
84 MUN	NRAJU	М	48	994284	MENT WORK	ı		AM		I	36	INFECTIVE ECZEMA	L3 XDS
85 MUN	NRAJAPPA	М	44	997233	LABOURER	Α	PH			В	6	PYODERMA	L4
86 KANN	NAIAH SHETTY	М	65	898029	RETIRED	Α	OF		DM HTN	P	1	DM HTN	R4
87 ASHV	WATHAMMA	F	56	997889	HW	Α	W			P, I	0.5	DM,GROIN INTERTRIGO	L3 L4
88 BHAD	DRACHALAM	М	58	999474	AGRI	Α	W			I, S	6		L4 R3 R4
89 MD 6	GHOUSE	М	49	999445	BUSINESS	ı	OF, HH, ATH			AS	48		L4
90 GULN	NAZ BEGUM	F	50	1002275	HW	I	W			I, S	180	ECZEMA, FINGER INTERTRIGO	L3 L4 R2 R3 R4 XPS XDS
91 UBBA	AVI	F	5	1004110	STUDENT		W,PH		ATOPY, SC	I, S	18	ECZEMA	L3 L4 R3 R4 XDS
92 SOM	IU	М	27	998031	LABOURER	Α	PH	TS	SC	I, B	1	T.CORPORIS, T.PEDIS	L1 L2 L3 L4 R1 R2 R3 R4
93 SRIRA	AMULU NAIDU	М	70	1004518	RETIRED	ı			HRFT	AS	180	HANSENS-RFT, HKD	L3 L4 R3 R4 X SOLE
94 VIKAS	S	М	21	1008000	WATCHMAN	Α	OF HH			AS	5	PITTED KERATOLYSIS, PYODERMA	L3 L4 R3 R4 XPS
95 ABEE	BUNISSA	F	50	997576	HW	Α	W		VITILIGO	AS	2	VITILIGO	L4 R4
96 MUN	NI REDDY	М	50	1003430	AGRI	ı	W			P, B	18	DM, DIABETIC FOOT, DIABETIC BL	R1 R4
97 DEVA	ARAJ	М	43	1008822	BUSINESS	Α	OF			AS	1	CORN, LSC, NEW DM	L4 R3 R4
98 ANJA	NAPPA	М	50	1009438	AGRI	- 1			DM	AS	24	DIABETIC FOOT, DM BULLA, CELLULITIS	R3 R4
99 NIDA	ARSHAN REDDY	М	4	1010905	STUDENT	Α	PH			I	2	SCABIES	L2 L3 L4 R2 R3 R4
100 BHAC	GYALAKSHMI	F	70	1015085	HW	- 1	W			AS	48	ONYCHOMYCOSIS	L4 R2 R3 R4 XPS
101 LAKS	IMH	F	36	N1034	HW	ı			PSORIASIS	S	24	PSORIASIS	L4
102 ABID	A JOHN	F	53	N13024	HW	ı	ОВ	TAF	SC	I, S	40	T.CORPORIS, NEW DM	L4 R4
103 MAN	ЛАТНА	F	30	N11758	TEACHER	ı	НН	TSA		P	28	HKD	L3
104 ARAV	VIND KUMAR	М	39	989828	CLERK	- 1	OF			P	36	DM	L3 L4 R3
105 ZARII	NA BEGUM	F	40	N13890	HW	ı	W			Р, В	144	NEW DM	L1 L2 XPS
106 KRISH			54	N13940	AGRI	Α				В, Р	3	DM, GROIN INTERTRIGO, LEFT LEG CELLULITIS	L3 L4 R3 R4
107 SRIH	ANUMAPPA	М	75	N3645	RETIRED	ı				AS	48		R4
108 LUDF	HIYA	F	6	N19521	STUDENT	Α	PH			P	1.5	PYODERMA	L1 L2 XDS XPS
109 MUN	NAWAR SULTANA	F	43	N15731	HW		W	TS, SA		I, B	4	T.PEDIS	L1 L2 L3 L4 R1 R2 R3 R4 X PS
110 HEM	NARAYAN	М	27	N16706	SALESMAN	I	OF			AS	36		L4
111 SHAII	KH ABDUL	М	24	N21454	BUSINESS	Α				В	2	FURUNCULOSIS, ORAL CANDIDIASIS	L2 L3
112 PADI	MAMMA	F	45	1018528	HW	I	W, IM, OB	TAF		P	40	VARICOSE VEINS	R4
113 HEM	AVATHI	F	49	N25314	HW	I		TAF TS		В, Р	12	GLUTEAL INTERTRIGO	L3 L4
114 VENK	KATESHAPPA	М	60	N37947	AGRI	I	W			P	12	CELLULITIS	L4 L3
115 RAJIN	NI	F	20	N32376	MAID	1	W			ı	24		L4 L3 L2 L1 R4 R3 R2 R1 XPS XLS

Examina	ation					1					
Primary lesions	Secondary Changes	Borders	Color	Deformities/Crowdin	RBS	Woods Lamp	кон	Fungal Culture	Gram stain	Bacterial culture	. DIAGNOSIS
MC :	S,	WD	HP			CRIF			PC,GPB,GPC	MSSA BACT	ERIAL FI
PL I	M	ID	Wh		160				PC,GPB,GPC	MRSA, K.PNEUMONIAE SS PNEUMONIAE MIXE	D TWI
PL :	S, ER	WD	Ery		78				GPC	MICROCOCCI CD	
PL	M,	WD	Wh		82				GPB	MICROCOCCI SIMP	LE FI
PL	M	wd	wh		103		Н	A. niger	PC,GPB, GPC	MSSA MIXE	D TWI
PL	M	WD	GR		137/201				PC,GNB,GPB,G	P.AERUGENOSA, ENTEROBACTER SPP. MIXE	D TWI
VS	ER, EX	ID	ERY		108						D TWI
PL I	M,	WD	WH		98				GPB GPC	MICROCOCCI SIMP	LE FI
PL I	M	ID	WH		70				GNB GPB PC	E.COLI ACINETOBACTER SPP. MIXE	D TWI
PL :	S	ID	ERY		94				GNB PC	PROVIDENCIA STUARTII(AMP-C PRODUCER) BACT	ERIAL FI
PL :	S,	WD	НР		108				GNB GPC	P.AERUGENOSA BACT	ERIAL FI
PL	M	WD	WH		162/198				GNB , PC	P.AERUGENOSA, ACINETOBACTER MIXE	D TWI
PL	M	ID	WH		120				GPB GPC	CONS	
PL :	S	ID			100		Н	A. niger	GPC GNB	K.OXYTOCA, CITROBACTER KOSERI MIXE	D TWI
PL I	M	WD	WH		96/128				GPC	MICROCOCCI SIMP	LE FI
PL	M	ID	WH	+	140/190				GNB GPB PC	ENTEROBACTER (AMP-C) BACT	ERIAL FI
PL I	M	ID	ERY		93				PC,GPC	MICROCOCCI SIMP	LE FI
PL I	M	WD	WH		84				GPC	CONS	LE FI
PL I	M, S	WD	НР		119/194					NO GROWTH SIMP	LE FI
	M,	ID	ERY		,				PC GNB		D TWI
	M	ID	ERY		76						D TWI
PL I	M	WD	WH		105					NO GROWTH CD	
PL I	M	WD	WH		108				GNB PC	P.AERUGENOSA BACT	ERIAL FI
PL :	S,	ID			93				GPC	CONS	LE FI
PL :	S, M	ID	WH		88					E COLI(AMP-C) BACT	ERIAL FI
	M	WD	WH		75				GPC PC	CONS SIMP	
	FZ	WD	ERY		118	_	Н	A.flavus			D TWI
PL I	M, S	WD	ERY		84			-	GPC GPB GNB I	E COLI P.AERUGENOSA MIXE	D TWI
	M, S	ID			98		Н		GPC PC		GAL FI
	M	ID	WH		118					MICROCOCCI SIMP	
PL I	M	WD	WH		114						D TWI
PL I	M	WD	WH		84					MICROCOCCI SIMP	
	M, S	WD	WH	+	130		Н	Microsporum	l	FUNG	
	M	WD	WH		96/132			,	PC	NO GROWTH SIMP	
PL	M	WD	WH		82		Н		PC GNB		D TWI

VS ER, S	ID	ERY,HP		90			PC GPC GNB	ACINETOBACTER	BACTERIAL FI
PL S	ID			132	Н		PC GNB	ACINETOBACTER	MIXED TWI
PL S, M	ID			122			GPC GPB	MICROCOCCI	SIMPLE FI
PL M	WD	WH		112			GPC	MICROCOCCI	SIMPLE FI
PL M	ID	WH		73			PC GNB	ENTEROBACTER (AMP-C), K.OXYTOCA(AMP-C)	MIXED TWI
PL M	ID	WH		81			GPC	MICROCOCCI	CD
PL S	ID			78			GNB GPB	ACINETOBACTER	BACTERIAL FI
PL M	WD	WH		96			GPB GPC	MICROCOCCI	SIMPLE FI
PL S, M	ID	WH		103			GPC	CONS	SIMPLE FI
PL S, FZ	WD	HP					GPC PC	MICROCOCCI	MISCELLANEOUS
PL M, S	WD	WH		210	Н			NO GROWTH	FUNGAL FI
VS, PL S, M	WD			129				NO GROWTH	CD
PL M, ER	WD	WH	338,	/441			PC,GPC	MSSA	BACTERIAL FI
PL M	WD	WH		98			GPC	MICROCOCCI	SIMPLE FI
PL M	WD	WH		112				NO GROWTH	SIMPLE FI
PL M	ID	GR		100	YC	C.albicans	PC GPC GNB G	K.OXYTOCA(AMP-C) P.AERUGENOSA	MIXED TWI
PL,PP M, S	ID	WH		98	Н		GPC GPB GNB	K.OXYTOCA, P.AERUGENOSA, PROTEUS VULGARIS	MIXED TWI
PL M	WD	HP		247			GPC PC	CONS	SIMPLE FI
/S, PL S, FZ, HK	ID			96			GPC	NO GROWTH	CD
PU, PP CR, EX, S	WD	WH		88	YC	C.albicans	SCANTY PC, YE	P.AERUGINOSA	MIXED TWI
PL M, S	WD	WH		93			PC GNB	K.PNEUMONIAE SS PNEUMONIAE, P.MIRABILIS	MIXED TWI
PL M	ID	WH		112			GPC PC	MSSA	BACTERIAL FI
PL S	ID			86	Н		GNB GPC	MSSA	MIXED TWI
SL CR, ER, S, FZ	ID	ERY		400			GPC GNB PC	E COLI(AMP-C), ACINETOBACTER	MIXED TWI
PL S M	ID	WH	108,	/140			GPC GNB PC	ECOLI, MSSA	MIXED TWI
PL DC, M	ID	WH	100,	/184			GPC	ALPHA HEMOLYTIC STREP VIRIDANS	BACTERIAL FI
PL M, DC	WD	GR		76			GNB GPC	P.AERUGENOSA	BACTERIAL FI
PL M	ID	WH		90			GPC	CONS	SIMPLE FI
PU ER, U, FZ	ID	WH		88			PC GPC	P.AERUGENOSA	BACTERIAL FI
PL M, DC	ID	ERY	150,	/220			PC GPC GNB	P.AERUGENOSA, ENTEROBACTER SPP.	MIXED TWI
PU M, DC		WH		90	YC	C.albicans	G+ BUDDING Y	EAST CELLS	FUNGAL FI
PL M,S	ID		160,	/200	YC	C.albicans	GPC,G+ BUDDI	MSSA	MIXED TWI
PL M		WH		77			GPC	MSSA	BACTERIAL FI
PL M, DC	WD	ERY	127,	/238	YC	C.albicans	PC, G+ BUDDIN	IG YEAST CELLS	FUNGAL FI
PL M	WD	WH		89	Н	Fusarium	GPC GPB GNB	ENTEROBACTER(AMP-C)	MIXED TWI
PL M	WD	WH		92			GPC PC	MICROCOCCI	MISCELLANEOUS
PL M	ID	WH	128,	/226			GPC GPB	MSSA	BACTERIAL FI
PL M	WD	WH		88			GPC	CONS	MISCELLANEOUS
PL M, S, FZ	WD	WH		95			GPC	CONS	SIMPLE FI
PL M	ID	WH		90			GPB GPC	CONS	CD
PL U, ER	WD	ERY	+	92			GPC	MICROCOCCI	SIMPLE FI
PL M	ID	WH		86			GPC	MSSA	BACTERIAL FI

PP	S				70	Н		GPC	MSSA	MIXED TWI
PU	DC, U		ERY		76			GPC PC	MSSA	BACTERIAL FI
PL	M, S	ID			87	Н		GPC PC	MSSA	MIXED TWI
PL	М	WD	ERY		102/260	YC	C.albicans	G+BUDDING Y	EAST CELLS	FUNGAL FI
PL	M,FZ	WD	GR					GPC GNB PC	E COLI ACINETOBACTER SPP.	MIXED TWI
PP, VS	S	ID	ERY		92			GPC PC	MSSA	BACTERIAL FI
PU	CR, DC	ID	ERY		81			GPC PC	MSSA	BACTERIAL FI
PU	M, DC		ERY		102			GPC PC	CONS	SIMPLE FI
PL	M, DC	ID	ERY		119/263			GPC	CONS	SIMPLE FI
PL	M, ER	WD	ERY		126/184			GPC PC	MRSA, B HEMOLYTIC STREP	MIXED TWI
PL	M, S		WH		92	Н	A.niger	GPC PC	ENTEROCOCCUS	MIXED TWI
PL	М	WD	ERY		132			GPC PC	MICROCOCCI	SIMPLE FI
VS, PP	CR, S, DC		ERY		86			GPC PC	MRSA	BACTERIAL FI
VS, PL	S FZ	ID			78			GPC PC	MSSA	BACTERIAL FI
PL	M, DC	ID	ERY		82	Н		GPC PC	MSSA	MIXED TWI
PL	M, FZ	ID		+	104			GPC	CONS	SIMPLE FI
PL, PP	M, S	WD			84			GPC	MICROCOCCI	SIMPLE FI
PL	M, S	ID	WH		93			PC	NO GROWTH	SIMPLE FI
BL, PL	U, S, DC	WD	ERY		90			GPC PC	MSSA	BACTERIAL FI
PL	М	WD	WH		130/230			GPC	MSSA	BACTERIAL FI
BL	ER, M	WD			598			GPC PC	MSSA	BACTERIAL FI
VS, PU	CR	ID	ERY		71			GPC	MICROCOCCI	MISCELLANEOUS
PL	M, S	WD	WH		130	Н	A.niger	GNB PC	ECOLI, P.AERUGENOSA	MIXED TWI
PL	S	WD	HP		88			GPC	CONS	MISCELLANEOUS
PL	M, S	ID	WH		213			GPC	CONS	SIMPLE FI
PL	M, S	WD	WH,ERY		88				NO GROWTH	MISCELLANEOUS
PL	M, DC	ID	WH		132/183	YC	C.albicans	G+ BUDDING Y	'EAST CELLS	FUNGAL FI
VS	ER, DC	WD	ERY		210			GNB PC	CITROBACTER KOSERI DIVERSUS(AMP-C)	BACTERIAL FI
PU	M, CR, GR, DC	WD	ERY		140/278			GPC GNB PC	P.AERUGENOSA	BACTERIAL FI
PL	М	WD	WH		86			GNB PC	K.PNEUMONIAE SS PNEUMONIAE	BACTERIAL FI
VS PU	ER, EX, CR	ID	ERY		70			GPC GNB PC	E.COLI, MSSA	MIXED TWI
PP PUS	S, FZ, DC	ID	ERY		98	YC	C.albicans	G+BUDDING Y	MRSA	MIXED TWI
PL	М	WD	WH		144			GNB PC	ACINETOBACTER	BACTERIAL FI
PL	ER, EX	ID	ERY		104	YC	C.tropicalis	G+BUDDING Y	EAST CELLS , GPC	FUNGAL FI
PL	М	WD	ERY		87			GPC GNB PC	ACINETOBACTER	BACTERIAL FI
PL	М	WD	ERY		98			GNB PC	E.COLI	BACTERIAL FI
PL	М	WD	WH		88			PC,GPC	MSSA	BACTERIAL FI
PL	S, FZ	WD	ERY		79			GPC PC	MSSA	BACTERIAL FI