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a b s t r a c t

Superoxide dismutase, known to gain large rate enhancement on dimerization, forms a homodimer
stabilized by hydrogen bonding between a number of internal water molecules and a few amino acid
residues at the interface. Within each subunit the b-sheets provide a sequence of delocalized p-electron
units of peptide bonds alternating with hydrogen bonds referred as p-H pathway. These pathways in the
two subunits in the dimer are interlinked through a chain of four water molecules bridged by hydrogen
bonds at the interface. Connecting the two Cu-centers this p-H pathway can enable rapid electron
transfer from one superoxide molecule to the other, crucial for the catalytic reaction and the high rate in
the dimer. A proton relay of hydrogen-bonded water molecules in the dimer translocates protons to form
the product, hydrogen peroxide.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

The first catalytic activity of erythrocuprein, the copper protein
isolated from erythrocytes in 1938 by Mann and Keilin [1] was
identified as dismutation of superoxide in 1969 by McCord and
Fridovich [2]. The basic action of the enzyme is understood as the
donor superoxide (OeO̶ �) donates its electron to Cuþþ, itself
becoming O¼O (dioxygen), and the reduced Cuþ then transfers the
electron to the acceptor OeO̶ � forming̶ OeO̶ that yields H2O2 on
protonation. Renamed superoxide dismutase (SOD), it had a great
impact in the area of oxygen radicals in biology ever since.

Early studies had discovered other functions of this protein such
as inhibition of autoxidation of catechol compounds, norepineph-
rine [3], 6-hydroxydopamine [4] and pyrogallol [5]. Similarly
reversal of autoxidation of some ortho-quinols (benzo- and naph-
tho-) [6] indicated that the acceptors are the corresponding semi-
quinones [�OeReOd]. This effect was recognized and interpreted
later as the action of SOD of reversing the first step of electron
transfer between dioxygen and a phenolate producing two oxygen
radical species, superoxide and phenolate radical [7]. Then the
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decrease in the rate of autoxidation represents the rate of SOD-
catalyzed back reaction, implicitly saving the bioactive catechol
substrate. Crane and co-workers discovered the SOD-
concentration-dependent inhibition of vanadate-mediated H2O2-
generating oxidation of NADH by O2 catalyzed by the plasma
membrane enzyme system [8]. This NADH oxidation system in-
volves the first electron transfer reaction between NADH and VV (a
diperoxovanadate complex) producing NAD� and a reduced form of
vanadium (VIV), both radical species, as in the case of pyrogallol
autoxidation [7]. It then became evident that SOD can dismutate
other radical species besides superoxide, essentially nullifying
autoxidation reactions [9]. The (CueZn)-SOD protein is also capable
of oxidizing nitroxyl anions (NO̶) to nitric oxide (�NO) [10] and
cysteine-SH to cysteine-S� followed by dimerization to cystine (-S-
S-) [11]. A new perspective emerged from these findings that this
ubiquitous copper, zinc-protein, possesses functions besides dis-
mutation of superoxide [12]. These functions essentially depend on
electron transfer at the catalytic site, typically by two half reactions,
initial reduction of Cuþþ by donors followed by reoxidation of Cuþ

by acceptors, subsumed to be in sequence at the same active site Cu
center.

Superoxide dismutase occurs as monomeric 16 kDa proteinwith
one atom each of Cu and Zn, and a characteristic protein fold
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described as Greek-key b-barrel tertiary structure [13e15]. Two
subunits of the SOD protein form a stable homodimer that includes
a number of internal water molecules “associated through unusu-
ally strong noncovalent interactions” [14]. Dimerization of the
protein enhances its catalytic activity by several-fold. The two Cu
sites situated near the surface in each subunit are separated in the
dimer by over 30 Å, interspersed by “a flattened eight-stranded
antiparallel” b-sheets [16]. This feature provides a stretch of pep-
tide units alternating with hydrogen bonds, known as p-H pathway
[17], suitable for electron transfer as the bridging element between
delocalized electrons is the hydrogen bond capable of transferring
electrons [18,19]. Found in electron transfer proteins, these p-H
pathways are employed thus in between cytochrome c - heme-Fe
and cytochrome oxidase - CuA center [20] and between CuA and
metal centers in cytochrome oxidase [21]. Extensive hydrogen-
bonded water channel, known to support a proton relay and
translocation [22], purportedly includes a rate-contributing step
[23] in the formation or removal of the product H2O2.

The two superoxide molecules needed for the dismutation re-
action interact with the enzyme, albeit differently. It was reported
that superoxide, cannot bind to the enzyme protein in the absence
of Arg141, donates its electron to Cu2þ and exits as dioxygen. It can
form a stable complex with the enzyme and Arg141 at the Cu-
center [24]. Simultaneously, the bridge of Cu-His61-Zn breaks
[25,26]. The Cuþ atom moves 1.7 Å [25] towards Arg141 and the
zinc center. His61 residue, now free, acquires a proton (His61-NεH)
used later for protonation of the substrate. Known as the two half
reactions, the reduction of Cu and its reoxidationmight occur in the
two Cu-centers in the dimer with the electron rapidly transferring
between them.

In this communication, we describe a p-H pathway assembled
across the b-sheets from both subunits in the SOD-dimer protein
connecting the two Cu-centers and thus the two half-reactions. In
addition, water channel/proton relay is also tracked between the
histidine residues/Cu-centers in the dimer protein.

2. Methods

Crystal structure of bovine superoxide dismutase (PDB ID:
1Q0E) was analyzed using pymol software for ‘Hydrogen Bonds’
starting from Cu and Zn centers of both the subunits by locating
residues below 4 Å distance andmarking the polar atoms, including
the water molecules, which are within the distance of 2.6e3.3 Å.
Whenever more than one hydrogen bond is encountered the short
and/or the strong (in terms of distance and the most favored angle
between the donor and acceptor) one is selected.

A chain of alternate peptide units and hydrogen bonds across b-
sheets, as in a-helix, is found between the two Cu-centers in the
dimer of SOD. Referred as ‘p-H pathway’, it can rapidly mobilize
electrons from one delocalized peptide unit (p-electron cloud) to
another of the b-sheets enabled by bridged hydrogen bonds, now
found experimentally to transfer electrons [18,19]. Internal water
molecules do invariably form part of these pathways, and the
pathway using smaller number is selected.

Based on clues from the D-path of cytochrome oxidase [21], Asp-
carboxyl groups and a peptide flip of glycine residue (lacking side
chain) are included in a chain of large number of watermolecules to
form the proton relay in translocating protons to the substrate [23].

3. Results

The subunits, designated A and B, are bridged by hydrogen
bonds of several water molecules and a few peptide bonds at the
interface (Fig. 1). It is noteworthy that the whole cross-section of
the interface is studded, across and along, with multiple hydrogen-
bonded water molecules. These apparently give unusual stability to
the homodimer. Out of sixteen peptide units found in the interface
area, the pairs Ile149 (HNeC¼O) Gly112 and Ile149 (O¼CeNH)
Gly49 from each subunit contribute four inter-subunit hydrogen
bonds. Other peptide units form hydrogen bonds with either
interface water molecules or with polar side chains of the subunits.
Remarkably, the flattened eight-stranded antiparallel b-sheets [16]
of each subunit provides a string of peptide units bridged by
hydrogen bonds. Six strings of these arising from water molecules
in each subunit from opposite direction merge in the interface
water pool. Combined, all these interactions contribute to the
extraordinary stability of the dimer.

In addition, b-sheets are found to provide two additional path-
ways of alternating delocalized electron units (peptide bonds)
bridged by hydrogen bonds as in cytochrome c and cytochrome
oxidase [20,21]. Bridged by four hydrogen-bonded water molecules
at the interface, one such p-H pathway (131 Å-long) links the two
Cu centers (33.5 Å) in the dimer of SOD (Fig. 2) and enables rapid
electron transfer between them.

Using the structures and metal centers described above, the
likely events after the substrate molecules reach the dimer are
given below. One molecule of superoxide transfers its electron to
reduce Cu2þ to Cuþ at a Cu-center (subunit A) and dissociates as
dioxygen (first half of the reaction). The connecting p-H pathway
rapidly transfers the electron to the other Cu-center (subunit B). In
the reduced state, Cuþ can only donate its electron to the second
molecule of superoxide (or any of the acceptor substrates). Because
of the “increased proton affinity” in the reduced protein [24], su-
peroxide is protonated to form HOeO� and is retained in the stable
complex in subunit B. Thus prepared, the substrate molecule can
receive the crucial second electron from Cuþ followed by another
protonation to form H2O2 (second half of the reaction). Thus the
two subunits in the dimer perform the two half-reactions with the
connecting p-H pathway relocating the electron from onemolecule
of the substrate to the other, the core reaction of the enzyme. These
electron paths start or end with a metal center (Cu). By linking the
two Cu-centers, this p-H pathway ensures rapid electron transfer in
the dimer. This explains the rate enhancement. It is self-evident
that the architecture of interior b-sheets of the dimer protein
makes this possible.

The proton relay of the water chain is also shown to be present
in the dimer protein (Fig. 3). It starts from His61-NεH-NεH of sub-
unit A and reaches His-coordinated Cu in subunit B (96.5Å) passing
through 26 water molecules, Asp96 and Asp122 residues (carboxyl
groups), and a peptide unit Leu82-Gly83. The residues that form
proton path are present in the both subunits but only one set forms
the path but not the other (hydrogen bond network absent) (Fig. 3).
The transfer of an electron and a proton from the subunit A to the
substrate bound in the subunit B completes the dismutase reaction.

4. Discussion

Dimerization of the SOD protein confers enormous rate
enhancement. It occurred to us that the dimer protein might
assemble a link p-H pathway for directional, rapid electron transfer
between the two Cu-centers in the two subunits, one acting as the
acceptor of an electron from the first superoxide anion, which be-
comes dioxygen, and the other as the donor of the electron to the
second superoxide anion, converting it to hydrogen peroxide on
protonation e the two recognized half-reactions. Such a link p-H
pathway, made possible by dimerization, is indeed found to be
present in this study. An advantage of such a defined pathway is
that an electron that enters one Cu-center rapidly reaches other Cu-
center. The calculated high electron transfer frequency (n) of
1.5� 1011 per sec for a dipeptide and enhancing further on



Fig. 1. The dimer of superoxide dismutase. Two subunits of superoxide dismutase protein are bridged by hydrogen bonds of multiple water molecules, peptide units and polar
amino acid residues at the interface forming a stable homodimer. Six strings of peptide units bridged by hydrogen bonds formed across the b-sheets in each subunit merge in the
water pool at the interface and give additional stability to the dimer. [Subunits A (light blue) and B (pink) are shown only as folded backbone. The atoms are identified (same in all
figures) as colored spheres: oxygen (red), nitrogen (blue), carbon (light gray), copper (light green sphere) and zinc (white sphere). Hydrogen bonds are shown as green broken lines;
only those between peptide units in the interface are shown in purple]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 2. The p-H pathway between the Cu-centers in superoxide dismutase dimer. The pathway is assembled by the alternating peptide bond and hydrogen bond sequence available
over the b-sheets between the Cu-centers. The oxygen atoms over the Cu atom on subunit B, shown in the crystal structure, represent two water-oxygen molecules in the place of
the substrate, superoxide. The same pathway is represented below on atom to atom basis.
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Fig. 3. The water chain and proton relay in superoxide dismutase dimer. A chain of water molecules bridged by hydrogen bonds connect the histidine residues at the CueZn centers
in the dimer. Note the inclusion of two aspartate residues and a peptide bond of glycine-leucine needed for completing the path.
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displacement of the connecting hydrogen atom in the bond [27] is
likely to suffice for the observed rate enhancements.

SOD protein folded in the absence of zinc is without activity
[28]. Catalytic activity needs both the constituent metals, Cu and
Zn. It is noted that the p-H pathway linking the two Cu-centers,
essential for the electron transfer activity, passes through Zn-
center.

Protons needed for forming the product, H2O2, seem to derive
from Arg141 and His61 within the active site of the protein and not
directly from themedium. The first one is added to superoxide from
an arginine residue preparing it to bind at the electron donor Cu-
center, and the second one is derived from distant His61-NεH
(released from the CueZn complex on reduction by superoxide)
through a long proton relay aided by hydrogen-bridged water-
chain. Importance of the proton translocation is underscored by its
rate-control [23] possibly in releasing the product.

It is worthy of note that another CueZn protein, cytochrome c
oxidase, also employed similar pathways between Cu-centers for
transfer of electrons as well as translocation of protons to form the
basis of reduction of dioxygen to water molecules [20,21]. Electron
transfer through a p-H pathway across the bulk of the protein using
the four protein structural features is the core reaction in the
vignette that emerged from these studies. It dawned upon us that
these enzymes may gain large rate enhancement by using rapid
electron transfer through the inbuilt p-H pathways generated by
the secondary structure, also explaining the need for a large
protein.
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