"PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND ANTIBIOGRAM OF *KLEBSIELLA PNEUMONIAE* ISOLATED FROM DIFFERENT CLINICAL SPECIMENS – A CROSS SECTIONAL STUDY "

BY Dr. MADHAVI -S- HULLUR, MBBS

DISSERTATION SUBMITTED TO SRI DEVARAJ URS ACADEMY OF HIGHER EDUCATION & RESEARCH TAMAKA, KOLAR, KARNATAKA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF MEDICINE IN MICROBIOLOGY

UNDER THE GUIDANCE OF

Dr. ARVIND NATARAJAN,
PROFESSOR & HEAD
DEPARTMENT OF MICROBIOLOGY

&

CO – GUIDE

Dr. P.N SREERAMULU

PROFESSOR & DEAN

SRI DEVARAJ URS MEDICAL COLLEGE

SRI DEVARAJ URS MEDICAL COLLEGE, KOLAR MAY 2022

SRI DEVARAJ URS ACADEMY OF HIGHER EDUCATION AND RESEARCH, TAMAKA, KOLAR, KARNATAKA

DECLARATION BY CANDIDATE

I HEREBY DECLARE THAT THIS DISSERTATION ENTITLED

"PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND ANTIBIOGRAM OF KLEBSIELLA PNEUMONIAE ISOLATED FROM DIFFERENT CLINICAL SPECIMENS – A CROSS SECTIONAL STUDY"

IS A BONAFIDE AND GENUINE RESEARCH WORK CARRIED OUT

IN SRI DEVARAJ URS MEDICAL COLLEGE, KOLAR

UNDER THE DIRECT GUIDANCE OF

PROFESSOR & HEAD
DEPARTMENT OF MICROBIOLOGY,

DATE PLACE: KOLAR SIGNATURE OF THE CANDIDATE **Dr. MADHAVI -S- HULLUR**

CERTIFICATE BY THE GUIDE

THIS IS TO CERTIFY THAT THE DISSERTATION ENTITLED

"PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND ANTIBIOGRAM OF *KLEBSIELLA PNEUMONIAE* ISOLATED FROM DIFFERENT CLINICAL SPECIMENS – A CROSS SECTIONAL STUDY "

IS A BONAFIDE RESEARCH WORK DONE BY Dr. MADHAVI -S- HULLUR

AT SRI DEVARAJ URS MEDICAL COLLEGE, KOLAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF

MD IN MICROBIOLOGY

DATE: SIGNATURE OF GUIDE

PLACE: KOLAR

DR. ARVIND NATARAJAN, MBBS, MD

PROFESSOR & HEAD

DEPARTMENT OF MICROBIOLOGY

CERTIFICATE BY THE CO-GUIDE

THIS IS TO CERTIFY THAT THE DISSERTATION ENTITLED

"PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND ANTIBIOGRAM OF *KLEBSIELLA PNEUMONIAE* ISOLATED FROM DIFFERENT CLINICAL SPECIMENS – A CROSS SECTIONAL STUDY "

IS A BONAFIDE RESEARCH WORK DONE BY

Dr. MADHAVI -S- HULLUR

AT SRI DEVARAJ URS MEDICAL COLLEGE, KOLAR
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF

MD IN MICROBIOLOGY

DATE SIGNATURE OF CO-GUIDE

PLACE: KOLAR

Dr. P.N SREERAMULU

PROFESSOR & DEAN

SRI DEVARAJ URS MEDICAL COLLEGE

DECLARATION BY THE CANDIDATE

I HEREBY DECLARE THAT
SRI DEVARAJ URS ACADEMY OF HIGHER EDUCATION AND RESEARCH
TAMAKA, KOLAR, KARNATAKA
SHALL HAVE THE RIGHTS TO PRESERVE, USE AND DISSEMINATE
THIS DISSERTATION,
IN PRINT OR ELECTRONIC FORMAT FOR ACADEMIC / RESEARCH

PURPOSE.

DATE: SIGNATURE OF THE CANDIDATE

PLACE: KOLAR DR. MADHAVI -S- HULLUR

Drillbit Softtech India Pvt. Ltd

Certificate of Plagiarism Check for Dissertation

Author Name

Dr.Madhavi Hullur

Course of Study

MD, MICROBIOLOGY

Name of Guide

Dr.ARVIND NATARAJAN

Department

MICROBIOLOGY

Acceptable Maximum Limit

10%

Submitted By

librarian@sduu.ac.in

Phenotypic Characterization of Virulence factors and

Paper Title

Antibiogram of Klebsiella pneumoniae isolated from Different Clinical Specimens - A Cross Sectional Study

Similarity Paper ID

437703

9%

Submission Date

2021-12-30 11:44:33

Signature of Student

EPARTMENT OF MICPOBIOLOGA RIDEWARAJURS MEDICAL COULEGE SOMMICALIOI AR KARMATAKA-BRE TOP

DEPARTMENT OF MICROBIOLUG. SRI DEVARAJ URS MEDICAL COLLEGI

AMAKA-KOLAR KARN/Gookdinator, UG & PG Program

ersity Library Sri Devaraj Urs Academy of Higher
Education a Research
Tamaka, KOLAR-563163s been generated by DrillBit Anti-Plagiarism Software

SRI DEVARAJ URS MEDICAL COLLEGE, TAMAKA, KOLAR

ETHICS COMMITTEE

CERTIFICATE

THIS IS TO CERTIFY THAT THE ETHICS COMMITTEE OF SRI DEVARAJ URS MEDICAL COLLEGE, TAMAKA, KOLAR HAS UNANIMOUSLY APPROVED

Dr. MADHAVI -S- HULLUR

POSTGRADUATE STUDENT IN THE DEPARTMENT OF MICROBIOLOGY OF SRI DEVARAJ URS MEDICAL COLLEGE TO TAKE UP THE DISSERTATION WORK ENTITLED

"PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND ANTIBIOGRAM OF *KLEBSIELLA PNEUMONIAE* ISOLATED FROM DIFFERENT CLINICAL SPECIMENS – A CROSS SECTIONAL STUDY "

TO BE SUBMITTED TO

SRI DEVARAJ URS ACADEMY OF

HIGHER EDUCATION AND RESEARCH, TAMAKA, KOLAR

MEMBER SECRETARY

ACKNOWLEDGEMENT

It is a pleasure to thank many people who made this dissertation possible. I thank each and every one for the knowledge they imparted to me and for the time they so graciously gave me.

I wish to express my humble, sincere indebtedness to

Dr. ARVIND NATARAJAN, Professor & HOD, Department of Microbiology,

SDUMC, Kolar, who encouraged me to take the subject of this study and who has been my teacher and supervisor in this scientific work.

I thank Sir for his excellent and tireless guidance, encouragement and patience throughout the years of the study.

Sincere thanks to Dr. P. N. SREERAMALU, Professor of Surgery and Dean,

for consent to be the co-guide and give timely help throughout the PG career.

I wish to express my deepest gratitude to: My Parents & Brother,
Dr. Beena P.M (Ex.Professor & HOD, Department of Microbiology),
my friend & batchmate Dr.Madhurima P. Reddy (MD Microbiology) for their constant
moral support & guidance.

I am grateful to Dr. Parimala. S, Dr. Anitha. D, Dr. Bharathi, Dr. Bindu Madhavi, and Dr. Namitha, Faculty members, Department of Microbiology, for their invaluable guidance, kind support, co-operation and timely advice.

I thank all the Central Diagnostics Laboratory Services - CDLS technicians (Mrs. Geetha, Mr. Muniraju, Mr. Ramamurthy & team) in Microbiology department, RLJH. I also thank all non teaching staff for their kind co-operation.

Date: Signature of the Candidate

Place: Kolar DR. MADHAVI -S- HULLUR

TABLE OF CONTENTS

SL NO.	PARTICULARS	PAGE NO.						
1	LIST OF ABBREVIATIONS	13						
2	ABSTRACT	14						
3	INTRODUCTION	16						
4	OBJECTIVES	19						
5	REVIEW OF LITERATURE	20						
6	MATERIALS AND METHODS	35						
7	RESULTS	44						
8	DISCUSSION	59						
9	SUMMARY	64						
10	CONCLUSION	65						
11	BIBLIOGRAPHY	66						
	<u>ANNEXURES</u> (72 – 77)							
I	INFORMED CONSENT	73						
II	PATIENT INFORMATION SHEET	74						
III	PATIENT PROFORMA	75						
IV	MASTER CHART	78						

LIST OF FIGURES

SL	FIGURES	PAGE
NO.		NO.
1.	Edwin Kleb(19 th Century German & Swiss Microbiologist)	21
2.	Carl Friedlander (German Microbiologist in 1882)	21
	Gan i nodiando (Gonnan inionosiologist in 1862)	
3.	Structure Of Gram Negative Bacilli (Klebsiella Pneumoniae)	22
J.	Ottucture Of Grain (Negative Bacilli (Negative B	22
4.	Crama atain 9 India ink pictures	23
4.	Grams stain & India ink pictures	23
5.	Types of Capsule staining methods	23
.	Types or eapsure etaining memore	
6.	Pictures On Scanning Electron Microscopy (SEM) / Transmission	24
0.		
	Electron Microscopy (TEM)	
7.	Growth on Culture medias	24
8.	Mechanisms Of Innate Immunity To Klebsiella Pneumoniae	27
9.	Schematic Representation Of Klebsiella Pneumoniae Virulence	28
	Factors And Of Host Immune Response	
10.	Hypervirulent <i>Klebsiella pneumoniae</i> – clinical and molecular	29
10.	perspectives	20
11.	Incidence Of Enterobacteriaceae associated with Bacteremia	31
12.	Common infections by Klebsiella Pneumoniae species	33
13.	Colorized scanning electron micrograph showing carbapenem-	35
	resistant Klebsiella pneumoniae interacting with a human	
	neutrophil	
14.	Non -hemolytic colonies on Blood agar plates	37
15.	Capsule staining methods used	37

16.	Hypermucoviscosity on Blood plate	38
17.	Biofilm testing	38
18.	Siderophore testing :chemicals used & plate demonstration	39
19.	Protease test on Milk agar media	40
20.	Gelatinase test on Gelatin media plate	40
21.	Hemagglutination test with D-mannose sugar & O +ve pooled blood cells	41
22.	Lipase & Lecithinase test on Egg yolk agar media preparation	41
23.	Klebsiella pneumoniae on KPC media demonstrated	42

LIST OF TABLES & CHARTS

NO.	TOPIC	PAGE NO.
1.	Distinguishing reactions of Klebsiella species	25
2.	Main characteristic of cKP, hvKP, and MDR-hvKP	29
3.	Virulence Factor associated genes	31
4.	Meta analysis report on <i>Klebsiella pneumoniae</i> virulence factors from other studies	31
5.	Antibiotic resistance associated genes	34
6.	Gender wise distribution (pie chart & table)	44
7.	Age wise distribution of Klebsiella pneumoniae isolates	44
8.	Type of samples collected in our study (pie chart & table)	45
9.	Distribution of <i>Klebsiella pneumoniae</i> samples positive for virulence factors	46
10.	Antibiogram pattern of Klebsiella pneumoniae samples	47
11.	Types of antimicrobial pattern in our study	48
12.	Association Between Each Virulence Factors & Antimicrobial Resistance Observed (Tables – 12 to 20)	49

LIST OF ABBREVIATIONS

- 1. WHO: World Health Organization
- 2. FDA: Food & Drug administration, USA
- 3. EUCAST: European Committee on Antimicrobial Susceptibility Testing
- 4. GNB: Gram negative bacilli
- 5. UTI: urinary tract infection
- 6. CAUTI: Catheter associated urinary tract infection
- 7. VAP: Ventilator associated pneumonia
- 8. CLABSI: Central line associated blood stream infection
- 9. cKP: Classical Klebsiella pneumoniae strains
- 10. hvKP: Hypervirulent Klebsiella pneumoniae strains
- 11. MDR -hvKP: Multi drug resistant hypervirulent Klebsiella pneumoniae strains
- 12. MS type -1 fimbriae : Mannose sensitive type -1 fimbriae
- 13. MR type -3 fimbriae : Mannose resistant type 3 fimbriae
- 14. MDR: Multidrug resistance
- 15. XDR Extensive drug resistance
- 16. PDR Pan drug resistance
- 17. ESBL : Extended spectrum of β lactamase enzymes
- 18. TEM: Temoniera type of ESBL
- 19. SHV -1: Sulfhydryl variable type of ESBL
- 20. CTX -M group :Cefotaximase -M group type of ESBL
- 21. IMP: Imipenem drug
- 22. MRP: Meropenem drug
- 23. ETP: Ertapenem drug
- 24. HMV Test: Hypermucoviscosity test
- 25. CRKP: Carbapenem resistant Klebsiella pneumoniae
- 26. MIC value: Minimum inhibitory concentration
- 27. NIH scientists: National Institute of Health scientists
- 28. CN1, NY9, CR14: are Genotypic Klebsiella pneumoniae strains
- 29. TLR -4: Toll like receptor 4
- 30. PRR: Pattern recognition receptor

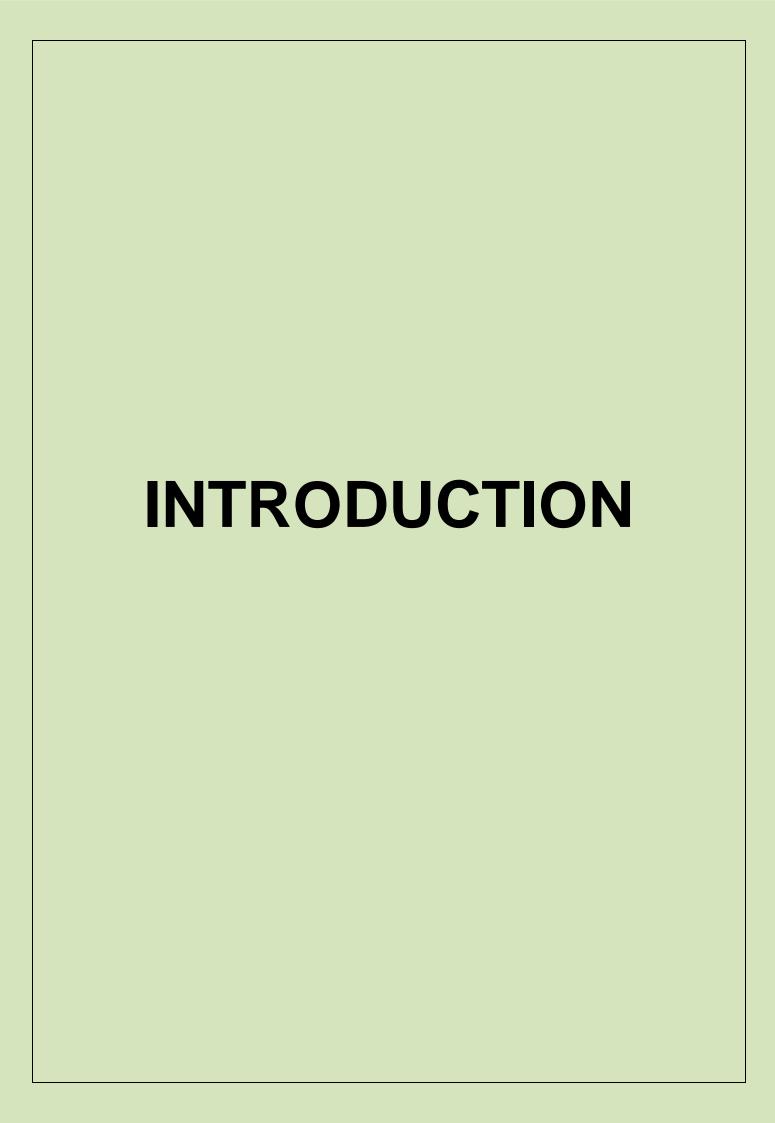
BACKGROUND: *Klebsiella pneumoniae* is gram negative, non-motile, capsulated organism. It is ubiquitous in nature, which is known to cause both community acquired and hospital acquired infections.

It normally resides on the mucosal surfaces of gastrointestinal tract and occasionally in nasopharynx, thus it can gain entry into circulation and other tissues causing infections. *Klebsiella pneumoniae* produces life threatening infections among the critically ill patients.

K. pneumoniae pathogenicity is mainly dependent on various virulence factors which allows it to overcome the host's innate immunity and therefore produce infection in a mammalian host. These virulence factors will help in its survival in various environmental conditions.

There are 2 main types of *Klebsiella pneumoniae* strains "classic *Klebsiella pneumoniae* [cKp] and hypervirulent *Klebsiella pneumoniae* [hvKp].

The identification of virulence factors and prompt detection of antimicrobial resistance will help the clinicians to treat the cases aggressively resulting in the better management of cases.


MATERIALS & METHODS:

A cross sectional observational study, conducted in Department of Microbiology of R.L. Jalappa Hospital and Research Centre, Tamaka, Kolar, from October 2019 to May 2021. Sample size of 150

RESULTS: The findings of our study on virulence factors are as follows: hemolysis 4.66 %(7 isolates), capsule 100 % (150 isolates), hypermucoviscosity (HMV) formation 44 % (66 isolates), biofilm production 54 % (81 isolates), siderophore production 73.33 % (110 isolates), protease 90 % (135 isolates), gelatinase 84 % (126 isolates), lipase production 79.33 % (119 isolates), lecithinase activity 54.66 % (82 isolates).

The antibiotic resistance pattern as follows: Piperacillin (90.66 %), Piperacillin tazobactum (67.33 %), Ampicillin (100 %), Amoxyclav (90.66 %), Cefotaxime (84 %), Ceftriaxone (82.66 %), Ceftazidime (82.66 %), Ceftazidime-clavulanic acid (71.33 %), Cefoxitin (67.33 %), Cotrimoxazole (71.33 %), Imipenem (63.33 %), Meropenem (70.0 %), Ertapenem (62.66 %), Amikacin (66 %), Gentamicin (65.33 %), Tobramycin (72.0 %), Chloramphenicol (38.66 %), Doxycycline (79.33 %), Ciprofloxacin (75.33 %), Levofloxacin (70. 66 %), Norfloxacin (66.67 %), Nitrofurantoin (77.78 %). ESBL K. ESBL ESBL

CONCLUSION: The increasing coexistence of the virulence factors & antimicrobial is of particular concern as it can lead to untreatable and invasive K. pneumoniae infections. Active surveillance to be done not only for antimicrobial resistance, but also for virulence determinants is imperative now to avoid the transmission and spread of multidrug resistant strains.

INTRODUCTION:

Klebsiella pneumoniae is a gram negative, capsulated, non motile bacilli, lactose fermenting, facultative anaerobic bacteria belonging to family Enterobacteriaceae [1, 2].

K. pneumoniae asymptomatically colonizes the skin, mouth, respiratory & gastrointestinal flora, because *Klebsiella pneumoniae* is a well known opportunistic pathogen from the human gut.

K. pneumoniae is one of the known agents of hospital and community acquired infections. "It is usually associated with upper & lower respiratory infections (pneumonia), bacteremia, septicaemia, urinary tract infection, wound infections, intra abdominal infections and neonatal septicemia, liver abscess, pneumonia, meningitis, and endophthalmitis, catheter associated urinary tract infection (CAUTI), ventilator associated pneumonia (VAP) & central line associated bloodstream infection (CLABSI) cases".^[3, 4,5]

"The pathogenicity of *K. pneumoniae* mainly arise from various virulence factors which allow it to overcome innate host immunity and to maintain infection in a mammalian host". [5,6,7] These virulence factors play a role in its survival in different environmental conditions and therefore help in establishing infection in the human body.

"K. pneumoniae pathogenicity is attributed to several virulence factors like fimbrial adhesins, lipopolysaccharides, capsule and siderophores, biofilm formation, lipase, lecithinase, haemagglutination, protease, gelatinase, hemolysis and hypermucoviscosity. All these virulence factors have the potential to produce a wide variety of infectious diseases in hospitalized patients & in the community". ^[5, 8]

Klebsiella pneumoniae produces hemolysin protein, an exotoxin (cytolyic toxin) which cause lysis of blood cells & therefore facilitate the dissemination of bacteria. Klebsiella pneumoniae being an encapsulated organism, helps in developing resistance to both antibiotics and host defense mechanisms. The capsule is antiphagocytic (prevents the bacteria from killing, by bacterial serum factors), they are associated with hyperviscous (hypervirulent phenotype) in K. pneumoniae infections. "There are 3 variants of Klebsiella pneumoniae - Classical K. pneumonia (cKP), Hypervirulent K. pneumoniae (hvKP) & Multidrug-resistant hvKP (MDR-hvKP). K. pneumoniae infections are caused by classic K. pneumoniae (cKp) type" [8]. These strains persist in hospital environments and cause infections in debilitated patients. (These cKp strains are distinct from hypervirulent K.pneumoniae(hvKp) strains). [8]

Klebsiella pneumoniae release many enzymes which have the ability to destroy host tissues. The lipase enzyme digests the host cellular lipid for its nutritional demand.

"Klebsiella pneumoniae`s lecithinase production is found to be directly associated with skin, soft tissue and systemic infections" [5, 9].

Klebsiella pneumoniae exhibits haemagglutination phenomenon - fimbrial and nonfimbrial adhesins (hemagglutinins) are mannose sensitive (MS) type 1 and mannose-resistant (MR) type 3. Strains with MS type of fimbriae are known to be more pathogenic and isolates with type 3(MR) are known to bind human endothelial cells, epithelial cells of genitourinary and respiratory system^[18, 21]

K. pneumoniae has the ability to form biofilms, matrix of extracellular polymeric substance adhere to each other and/or to a surface. "*K. pneumoniae* biofilms may also contribute to colonization of the gastrointestinal, respiratory and urinary tract and the development of invasive infections especially in immunocompromised patients. *K. pneumoniae* can adhere to medical devices forming biofilms"^[18], avoiding the immune system and favoring the antimicrobial therapy failure.

In the antibiotic era, *K. pneumoniae* is an established cause of healthcare-associated infections (HAI). *K. pneumoniae* strains are naturally resistant to ampicillin, carbenicillin and ticarcillin because of production of a chromosomal penicillinase, sulfhydryl variable (SHV-1). ^[10] The global rise of multidrug-resistant (MDR) gramnegative bacteria represents an increasing threat to human health. ^[18,19]

Multidrug-resistant (MDR) Klebsiella pneumoniae is an increasing threat to human health & causes difficulty to treat the infections with a high mortality rate. Klebsiella pneumoniae is one of the species recognized in ESKAPE group (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), associated by their characteristic potential to escape or evade the action of antimicrobial agents.

World Health Organization (WHO) lists *K. pneumoniae* as high priority pathogen and promotes the research and development (R & D) for new antibiotics due to the growing global problem of antimicrobial resistance towards this species. (World Health Organization, 2017).

REASON FOR CHOOSING THIS STUDY:

K. pneumoniae is known as the most common causative agent in hospital and community acquired infections. *K. pneumoniae* pathogenicity is mainly due to various virulence factors which allows it to overcome the host's innate immunity and therefore maintain infection in a mammalian host. [7,8,36] These virulence factors are important for its survival in diverse environmental conditions and therefore help in establishing infections in the human body. *K. pneumoniae* is associated with high mortality of about 50 % even with antimicrobial therapy. Hence, we conducted research in this area to evaluate the association between virulence factors and antibiotic resistance in *Klebsiella pneumoniae* isolate.

OBJE •	ECTIVES OF THE STUDY To determine the various virulence factors among <i>Klebsiella pneumoniae</i> isolates.
•	To determine the antibiotic susceptibility pattern of <i>Klebsiella pneumoniae</i> isolates
•	To evaluate the association between virulence factors and antibiotic resistance in <i>Klebsiella pneumoniae</i> isolates.

REVIEW OF LITERATURE

1) HISTORY OF KLEBSIELLA PNEUMONIAE:

a) The genus Klebsiella belongs to the tribe Klebsiellae, a member of the family Enterobacteriaceae. This organism is named after Edwin Klebs, a 19th century German & Swiss Microbiologist [14]

Fig: 1 - EDWIN KLEB

b) Carl Friedlander, German Microbiologist in 1882 was the 1st to describe this bacteria & isolated from the lungs of patients who had died from pneumonia.^[2,3,8]

Fig: 2 - CARL FRIEDLANDER

2) CLASSIFICATION OF KLEBSIELLA GENUS:

- 1) Klebsiella pneumoniae
 - i) Subspecies aerogenes
 - ii) Subspecies ozaenae
 - iii) Subspecies pneumoniae
 - iv) Subspecies rhinoscleromatis
- 2) Klebsiella ornitholytica
- 3) Klebsiella oxytoca
- 4) Klebsiella planticola
- 5) Klebsiella terrigena
- 3) STRUCTURE &MORPHOLOGY: This Klebsiella pneumoniae is a gram negative bacilli (GNB), short, stout & capsulated bacilli. It is a non-fastidious bacteria & will grow on basal media like Nutrient agar.

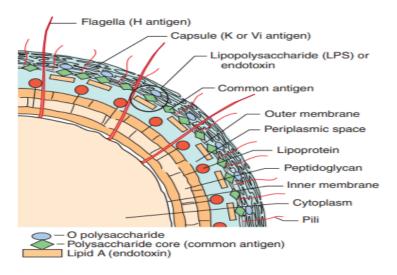
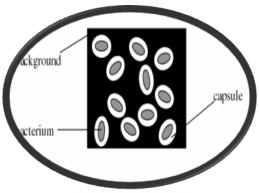



FIG: 3 – Structure Of Gram Negative Bacilli (Klebsiella Pneumoniae)

4) MICROSCOPY: Grams stain shows gram negative bacilli, short, stout & capsulated bacilli

5) **CAPSULE STAINING**: India ink staining is a negative stain which demonstrates *Klebsiella pneumoniae* as a capsulated organism. There are different staining methods – like India ink method, Maneval's method, Hiss method, Anthony's method.

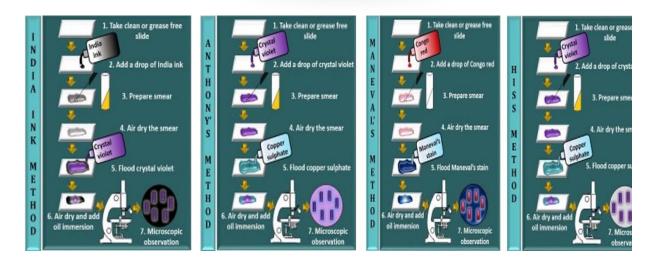
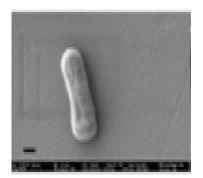
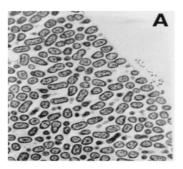




FIG: 5 – Types of Capsule staining methods

FIG: 6 - Pictures On Scanning Electron Microscopy (SEM) / Transmission Electron Microscopy (TEM):

SEM PICTURE

TEM PICTURE

5) CULTURAL CHARACTERISTICS OF KLEBSIELLA PNEUMONIAE [1, 2,4]:

On **Nutrient agar** (Non selective media): *Klebsiella pneumoniae produces* mucoid, round, non-pigmented colonies, no swarming.

On **Blood agar** (Enriched media): *Klebsiella pneumoniae produces* large, grey, round, opaque, mucoid, non -hemolytic colonies.

On Selective / Differential media : (**Mac conkey agar**) – pink, mucoid, lactose fermenting colonies. (Mucoid nature is due to polysaccharide capsule of this organism).

FIG 7: Growth on Culture medias

7) Biochemical Reactions of Klebsiella pneumoniae [1,3,4,5]:

Klebsiella pneumoniae produce urease, utilize citrate, produce acidic slant & acidic butt with gas, no H₂S production on Triple sugar iron (TSI) media & Indole test negative, It grows on potassium cyanide medium (KCN), Phenylalanine deaminase

test negative, Voges proskauer test positive (Acetoin production), Methyl red test negative.

Klebsiella pneumoniae isargininedihydrolase negative, Ornithine decarboxylase negative & lysine decarboxylase positive. ONPG (β -galactosidase) positive, and ferments a variety of carbohydrates.

Fermentation of :Glucose, Lactose, Maltose, Mannitol, Mannose, Melibiose, Adonitol, Arabinose, Arabitol, Cellobiose, Glycerol, Inositol, Myo Inositol, Raffinose, Rhamnose, , Sorbitol, Sucrose, Trehalose, Xylose. Fermentation of Salicin& Tartrate – positive.

Table: 1 Distinguishing reactions of *Klebsiella species* (based on Ewing 1986, Barrow & Feltham 1993):

(+ve) - means > 85 % of strains positive, (-ve) – means > 85 % of strains negative, (+/-) means 16 - 84 % of strains positive after 24 - 48 hours at 37° C

Species :	VP (Voges Proskauer test)	Lactose fermentat ion	Gas formation	Indole test	Citrate utilization	Malonate test	Urease	Lysine decarboxylati on	Growth on KCN media
Klebsiella pneumoniae									
• Subspecies : aerogenes	+ ve	+ ve	+ ve	- ve	+ ve	+ ve	+ ve	+ ve	+ ve
• Subspecies : ozaenae	- ve	+ ve /-ve	+ ve/- ve	- ve	+ ve/- ve	- ve	- ve	+ ve /- ve	+ ve
Subspecies : pneumoniae	- ve	+ ve	+ ve	- ve	+ ve	+ ve	+ ve	+ ve	+ ve
Subspecies: rhinosclerom atis	- ve	- ve	- ve	- ve	-ve	+ ve	- ve	- ve	+ ve/- ve
Klebsiella ornithinolytica	+ ve / -ve	+ ve	+ ve	+ ve	+ ve	+ ve	+ ve	+ ve	+ ve
Klebsiella oxytoca	+ ve	+ ve	+ ve	+ ve	+ ve	+ ve	+ ve	+ ve	+ ve
Klebsiella planticola	+ ve	+ ve	+ ve	+ ve /- ve	+ ve	+ ve	+ ve	+ ve	+ ve
Klebsiella terrigena	+ ve	+ ve	+ ve /- ve	- ve	+ ve	+ ve	- ve	+ ve	+ ve

8) COLONIZATION OF KLEBSIELLA PNEUMONIAE [14, 15, 18]:

K. pneumoniae will asymptomatically colonize the skin, mouth, respiratory & gastrointestinal flora. *Klebsiella pneumoniae* is one of the normal commensal flora of human gut. *K. pneumoniae* is also found in water, sewage, soil, and plant surfaces. The environment acts as a reservoir for human infections. Several studies have shown that *K. pneumoniae* has same biochemical patterns, virulence and bacteriocin susceptibility patterns in the environment as well as their clinical counterparts.

Environmental isolates are easily treatable by antibiotics, than the clinical *Klebsiella pneumoniae* isolates - suggesting that selective pressure exists in a clinical setting.^[14, 15]

- Colonization is higher in adults than children,
- Colonization differs at different body sites, community & hospital acquired infections

- In nasopharynx from 3 15 %, common in alcoholics), but colonization in hospital acquired nasopharynx is much higher to 19 %.
- Gastrointestinal colonization in HA cases is 35 %, in CA cases upto 77 %.
- Colonization also increase following antibiotic treatment.

The wide variation in colonization rates may be due to differences in the patient populations.

- **9) SOURCE OF INFECTION**: Infected persons, asymptomatic *Klebsiella pneumoniae* carriers in the community, contaminated surfaces and instrumentation are the potential source.
- **10) MODE OF TRANSMISSION**: *K. pneumoniae* will be transmitted from personto-person, contact between healthcare workers and patients.

Once acquired, *K. pneumoniae* colonizes the mucosal surfaces of nasopharynx and gastrointestinal tract. These bacteria can be found on skin (but transient at this site rather than colonizing).

11) Host factors that predisposes to colonization and infection are as follow:

- Admission to an wards & intensive care ward (ICU), ie any hospitalized patients can acquire
- Prolonged use of invasive devices
- Poor infection control practices
- Immunocompromised especially alcoholics and diabetics
- Prolonged use of broad-spectrum antibiotics

Bacteria enter the host either by direct inoculation or by following oropharyngeal aspiration.

12) ROLE OF INNATE IMMUNITY IN KLEBSIELLA PNEUMONIAE INFECTIONS:

There are few studies supporting the contribution of Pattern recognition receptor (PRR) governed signalling to control *Klebsiella* infections. Like other bacterial infections TLR4 signalling has an important role in antibacterial defence against *Klebsiella* infection, (that means lack of TLR4 signalling is associated with a decreased activity of IL17 and IL23 in the lungs of infected mice)". [36, 37]

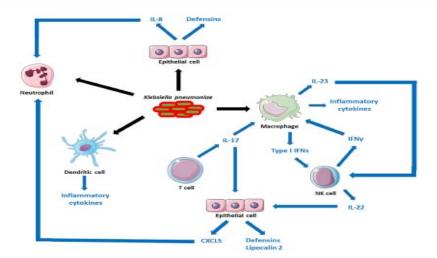


FIG: 8 - Mechanisms Of Innate Immunity To Klebsiella Pneumoniae

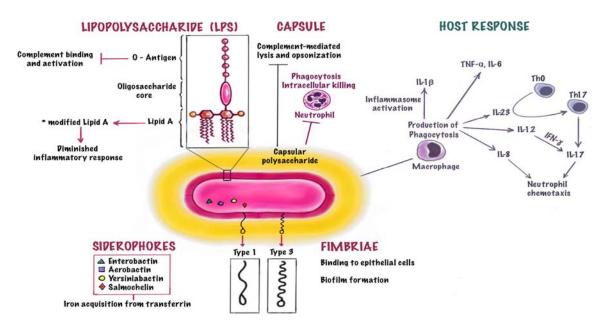
K. pneumoniae remodels its LPS lipid A domain to counteract host cationic antimicrobial peptides (CAMPs) and polymyxins. It has developed strategies to counteract CAMPs & defensins.

CAMPs and antibiotics like quinolones and polymyxins share the same initial target in the outer membrane of Gram-negative bacteria. The lipid A of *K. pneumoniae* shows a remarkable plasticity. ^[37]OmpA is part of regulatory network controlling systems that is required to upgrade the CAMPs bactericidal action. ^[36, 37]

It is a widely held belief that *K. pneumoniae* is a pathogen, which fails to stimulate the innate immune responses, but now there is enough evidence to show that even *Klebsiella pneumoniae* can subvert the host defenses.^[36,37]

K. pneumoniae will resist bacterial killing by one of these following mechanisms:

- a) Counteracting soluble effectors of the immune system,
- b) Counteracting immune cells,
- c) Ablating host defensesignaling,
- **d)** Subversion of nutritional immunity.


13) VIRULENCE FACTORS

Host protection from bacterial invasion mainly depends on two things:

- polymorphonuclear granulocytes which phagocytose the bacteria
- serum complement proteins which are bactericidal.

The alternate pathway of complement activation is more active in *Klebsiella pneumoniae* infection, the capsule protects bacteria from phagocytosis and serum bactericidal proteins. *K. pneumoniae* has many fimbrial and non-fimbrial adhesins which help in host cell adhesion & this is critical for the infectious process". [40, 42]

Some K. pneumoniae strains can modify the LPS making it unrecognizable to immune cells, whereas others strains use the capsule to prevent LPS detection by toll-like receptor (TLR4) receptors. K. pneumoniae with type 1 and 3 fimbriae responsible for adhesion to biotic and abiotic surfaces & hence facilitate epithelial cell invasion and biofilm formation. The monocyte/macrophage system plays a pivotal role in the innate immune response, through phagocytosis and production of immune mediators such as cytokines and chemokines (IL- 8, 17, 23 & IFN- γ). Other important cytokines are IL- 1β (produced via activation of the NOD-like receptor pyrin domain-containing (NLRP3) inflammasome pathway), and other pro-inflammatory cytokines such as (TNF- α) and IL-6. [36,37]

FIG : 9 - Schematic Representation Of *Klebsiella Pneumoniae* Virulence Factors And Of Host Immune Response [7]

13 a) ROLE OF CAPSULE & SIDEROPHORE IN PATHOGENESIS:

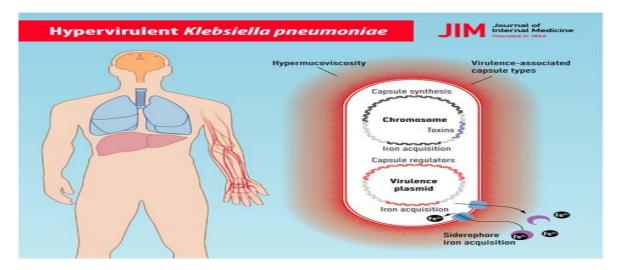


FIG: 10 - Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives.

- a) Capsular polysaccharides prevent phagocytosis and block complementmediated lysis and opsonization. The intact LPS elicits a robust inflammatory response and prevents binding of C1q to bacteria and the subsequent activation of the complement pathway.
- b) *Klebsiella pneumoniae* also synthesizes siderophores (enterobactin, aerobactin, yersiniabactin and salmochelin) to acquire iron from the host.

TABLE: 2 - Main characteristic of cKP, hvKP, and MDR-hvKP [17]:

Characteristics	Classical K. pneumoniae (cKP)	Hypervirulent K. pneumoniae (bvKP)	Multidrug-resistant byKP, (MDR-byKP)	References
Infections	Acquisition: nosocomial Host: immunocompromised patients Geographic region: the whole world Infectious sites: urinary tract infections, pneumonia, bloodstream infections; usually polymicrobial at sites of infection Metastasis: uncommon	Acquisition: community Host: healthy adults Geographic region: Southeast Asia Infectious sites: pyogenic liver abscess, meningitis, endophthalmitis, necrotizing fasciitis; usually monomicrobial at sites of infection Metastasis: Common	Acquisition: nosocomial and community Host: usually immunocompromised patients (Geographic region: Asia (especially China) Infection sites: pyogenic liver abscess, bloodstream infections, urinary tract infections	Harada et al., 2019; Russo and Marr, 2019; Liu C. et al., 2020; Tang et al., 2020
Phenotypes	Non-hypermucoviscosity and string <5 mm	Hypermucoviscosity and string ≥5 mm	Hypermucoviscosity or non- typermucoviscosity	Russo et al., 2018
Common serotypes	K1-K79	K1, K2, K5, K16, K20, K54, K57, KN1	K1, K2, K16, K20, K54, K62, K64, K47	Pan et al., 2008, 2015; Yang et al., 2021
Siderophores	Enterobactin, yersiniabactin	Enterobactin, versiniabactin, salmochelin, and aerobactin	Enterobactin, versiniabactin, salmochelin, and aerobactin	Russo et al., 2015; Lam et al., 2018b; Choby et al., 2020

13 b) ROLE OF FIMBRIAE (HEMAGGLUTINATION PHENOMENON):

Fimbriae mediate stable adherence, a critical step for progression to infection. Klebsiella pneumoniae have 2 types of fimbriae / pili (Type -1 & Type -3). Both types of pili have a role in colonization in urinary catheters / in hospital patients as catheter associated UTI (CAUTI) cases. $^{[41,42]}$

- a) **type 1 (fim) pili** have ability to adhere to human mucosal & epithelial surfaces,
- b) **type -3 (mrk) pili** adhere to cell surfaces & strong promoters of biofilm (BF) formation.

13 c) ROLE OF BIOFILMS:

K. pneumoniae biofilms are formed on the inner surfaces of catheters and other indwelling devices. *K. pneumoniae* cells within biofilms are partially protected from immune defenses. The matrix blocks the access of antibodies and antibacterial peptides and reduces the efficiency of complement and phagocytosis. *K.* pneumoniae is able to form biofilms (that is extracellular polymeric substance comprising of polysaccharides, proteins and DNA). *K. pneumoniae* biofilms are those formed on the inner surfaces of catheters and other indwelling devices. *K. pneumoniae* biofilms will colonize the gastrointestinal, respiratory and urinary tract, and promote the development of invasive infections in the immunocompromised patients in hospitals. *K. pneumoniae* biofilms on solid surfaces proceeds from cell adherence to microcolony formation.^[7,10,18] Given the dynamic process of biofilm production and the variability of environmental stimuli, embedded cells must be capable of swift and extensive changes in gene expression. Transcriptional regulation is controlled by quorum sensing.^[10]

- 13 d) **ROLE OF LIPASE / PHOSPHOLIPASE**: In hypervirulent strain &carbapenemase producing strains, these enzymes play a role in inter & intraspecies killing. Antibiotic usage promotes its secretion. The lipase enzyme digests the host cellular lipid for its nutritional demand, the secretary systems are part of the core & accessory genome which promote competition with other bacteria at sites of colonization & increase the chances of infection. ^[5, 42]
- 13 e) **ROLE OF GELATINASE**: *Klebsiella pneumoniae isolates produce* gelatinase enzyme, which hydrolyse gelatinand collagen in subcutaneous tissues during wound infections. ^[5]
- 13 f) **ROLE OF PROTEASE PRODUCTION**: *Klebsiella pneumoniae isolates* also produce protease enzyme, which help in breakdown of protein structures in the tissues & organs, which made have a role in invasiveness of the disease process.

Table: 3 - Virulence Factor associated genes

Virulence Factor associated genes	Genes Of Importance
Fimbriae	fim D, fim H, mrk C, mrk D
For fimbrial (Type – 1)	fim H gene
For fimbrial (Type -3)	mrk D
Capsule-associated genes	ycf M, wab G, uge and rmp A
Siderophores	kfu gene
For HMV phenotype	rmp A gene
For non- fimbrial adhesion factor	cf 29A &cf 29K genes.

Table : 4 - Meta analysis report on *Klebsiella pneumoniae* virulence factors from other studies

VIRULENCE FACTORS:	RamaKrishn a et al (2019 published)	lmtiaz et al, 2021 published	AL -A ammary et al –2017 published	Aljanaby et al (published in 2016)	Lee et al (study in 2006, only on HMV)	Hassan R et al	Dougnon V et al (2021 article)
Hemolysis	Not done	8 %	No hemoly sis			7 %	20.0 %
Capsule Formation	Not done	99 %	100 %	100 %			
HMV Test	7%	22 %	Not done	62 %	14.8%-in hospital infections& 41.5% in community		
Biofilm Formation	79%	94%	75 %	100 %	·	67 %	3.34 %
Siderophore Production	Not done	Not done	100 %	100 %			
Protease [With Milk Agar]	44%					2.56 % (1 isolate)	0 %
Gelatinase Test	41%	12 %					
Lipase	58%					33 %	23.34 %
Lecithinase Test	55%					0 %	3.34 %
Hemagglutina tion test	58%	100%				MSHA - 17 %, MRHA - 83 %	31.67 %

MSHA – Mannose sensitive hemagglutination (absence of hemagglutination)
 MRHA - Mannose resistant hemagglutination (presence of hemagglutination)

14) EPIDEMIOLOGY [18, 36]:

Humans are reservoir for K. pneumoniae, In the general community – (5% to 38% of individuals carry the organism in their stool) and (1% to 6% in the nasopharynx).

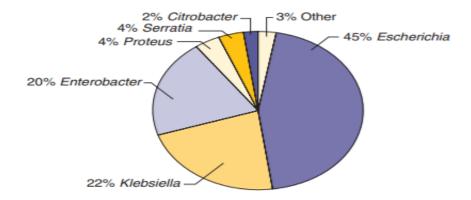


Fig: 11 - Incidence Of Enterobacteriaceae associated with Bacteremia

The main reservoirs of infection are patient's GIT and healthcare workers in hospital, which at times are responsible for nosocomial outbreak. The carrier rate for *K. pneumoniae* in hospitalized patients are much higher than that found in the community. In one-study, carrier rates as high as 77% can be seen in the stool of those hospitalized and are related to the number of antibiotics given.^[37]

K. pneumoniae causing pneumonia are of 2 types: community-acquired or hospital-acquired pneumonia. In the western world *K. pneumoniae* accounts for 3% to 5% of all community-acquired pneumonia, but in developing countries *K. pneumoniae* infections accounts to approximately 15% of all cases of pneumonia.

Overall, *K. pneumoniae* accounts for approximately 11.8% of all hospital-acquired pneumonia in the world. (In those who develop pneumonia on a ventilator - between 8% to 12%, while only 7% occur in those patients who are not on ventilator). Mortality ranges from 50% to 100% in patients with alcoholism and septicemia.

15) INFECTIONS CAUSED BY KLEBSIELLA PNEUMONIAE $^{[3,5,6]}$:

K. pneumoniae is a known causative agent of hospital and community acquired infections. It is associated with upper & lower respiratory infections (pneumonia), bacteremia, septicaemia, urinary tract infection, wound infections, intra abdominal infections and neonatal septicemia, liver abscess, "pneumonia, meningitis, and endophthalmitis, catheter associated urinary tract infection (CAUTI), ventilator associated pneumonia (VAP) & central line associated bloodstream infection (CLABSI) cases".[3,7]

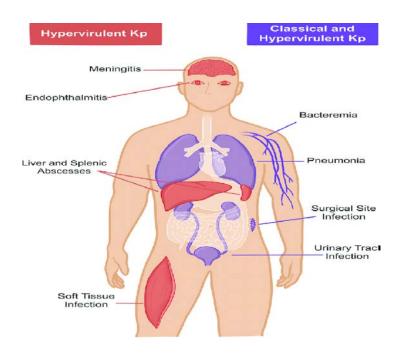


FIG: 12 - Common infections by Klebsiella Pneumoniae species

ANTIMICROBIAL RESISTANCE (AMR)

This *Klebsiella pneumoniae* is an opportunistic bacteria, known to cause infections in hospitalized & immunocompromised individuals, *K. pneumoniae* is known to have high resistance to a variety of broad spectrum antibiotics like beta-lactam group, fluoroquinolones and aminoglycosides.

 β -lactam group of drugs are commonly prescribed worldwide (which include penicillins, cephalosporins, monobactams, and carbapenems). "The production of β -lactamase enzymes or the active expulsion of β -lactam molecules from K. *pneumoniae* represent the main indications of β -lactam antibiotic resistance" ^[9, 12,14,15]

Carbapenems are the group of antimicrobials prescribed for the treatment of infections caused by ESBL *K. pneumoniae isolates*. Now carbapenem resistance is on the rise, and a well documented information in other studies now. "Carbapenemase resistant *K. pneumoniae* (CRKP) have developed due to the production of β-lactamases, efflux pumps, and mutations that alter the expression and/or function of porins and penicillin-binding proteins (PBPs)" [15,19].

Antimicrobial resistance (AMR) occur by horizontal gene transfer, for spread of transmissible plasmids, acquisition of resistance genes (which carry virulence factors).

For this bacteria to survive, the acquisition of resistance and virulent traits is necessary. Some reports suggest they have a role in the pathogenesis of *K.pneumoniae* infections.

"Capsule, lipopolysaccharide (LPS), fimbriae (types 1 and 3), and siderophores are virulence factors that mainly contribute to the pathogenicity of *K. pneumoniae*". [12, 15, 19]

During 1980s *K. pneumoniae* became the index species for plasmids-encoding ESBLs, conferring resistance to expanded-spectrum cephalosporins. Initially, they were Temoniera (TEM)- and SHV type ESBLs and coexisted on the plasmids with elements encoding resistance to aminoglycosides, tetracyclines and trimethoprim-sulfamethoxazole. The 1990s marked the emergence of a new ESBL family, the cefotaximase-M (CTX-M) group, which are currently the dominant ESBLs in *K. pneumoniae*. These enzymes confer resistance to penicillins and expanded spectrum cephalosporins but are ineffective against carbapenems".^[10]

From 2015 carbapenem-resistant *K. pneumoniae* (CRKP) has emerged in several countries.

Many of the antibiotic-resistant genes (mobile pool of virulence and antimicrobial resistance genes) was 1st described in *Klebsiella* as "*K. pneumoniae* mobilome" and they encompass plasmids that harbor antibiotic resistance genes (ARG`s) and transposons.^[40]

Very few options are left for treating the patients infected with *MDR K. pneumoniae* - limited to combination therapy / colistin.

Table 5 : Antibiotic resistance associated genes

Antibiotic resistance associated genes	Genes Of Importance
ESBL-associated genes	blaSHV, blaTEM, blaCTX-M-1, blaOXA 48
Genes conferring resistance to quinolones	aac (6)- Ib-cr, qnrB
For aminoglycosides	aad b
For sulfonamides	sul 1 and sul 2

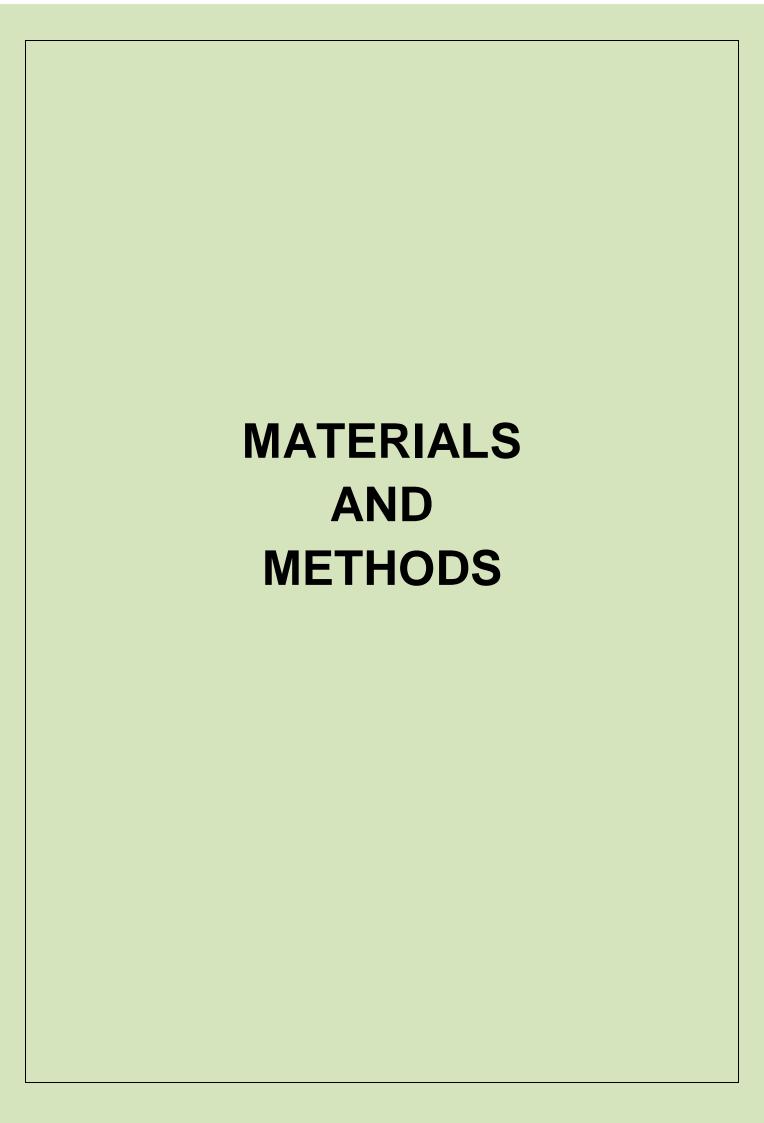
The history of polymyxin resistance in *K. pneumoniae* is shorter compared to other classes

of antibiotics, owing to restricted use in human medicine between 1980s and 2000s, due to recognized toxicity^[37]

Tigecycline is the first glycylcycline launched, in use against *K. pneumoniae* infections from 2005. Tigecycline was considered a promising drug, with broadspectrum activity even against ESBL-producing strains, but an MDR *K. pneumonia*

strain possessing decreased tigecycline susceptibility (MIC > 4 μ g/mL) was isolated at one of the hospital ^[37]

The global emergence of multidrug-resistant (MDR) *Klebsiella* strains significantly reduces the available options to treat the infections.


Whole-genome sequences of *K. pneumoniae* CN1, NY9, and CR14:

"Three <u>K. pneumoniae</u> isolates, CN1, NY9, and CR14, were confirmed to carry both *bla*_{CTX-M} and *bla*_{KPC} genes. CN1 and NY9 were recovered from two patients in New York City in 2013, whereas CR14 was cultured from a WMC patient in 2012. To obtain complete genome sequence for structural analysis, they employed both shortand long-read sequencing and conducted *de novo* assembly". [37]

Study Shows Promising Therapy for *Drug-Resistant Klebsiella Pneumoniae*: A promising strategy to tame troublesome drug-resistant bacteria is bacteriophage, or phage therapy, which uses viruses instead of antibiotics. NIH scientists have used two different bacteriophage viruses individually and then together to successfully treat research mice infected with multidrug-resistant Klebsiella pneumoniae sequence type 258 (ST258).

FIG: 13 - Colorized scanning electron micrograph showing carbapenem-resistant Klebsiella pneumoniae interacting with a human neutrophil. (**PHOTO: NIAID – NATIONAL INSTITUTE FOR ALLERGY & INFECTIOUS DISEASES)** K. pneumoniae ST258 is included on a CDC list of biggest antibiotic resistance threats in the U.S (because of high rates of morbidity and mortality).

Materials and methods:

This was a Cross sectional observational study. Conducted in the Department of Microbiology at Central Diagnostics Laboratory Services (CDLS), R.L. Jalappa Hospital and Research Centre, Tamaka, Kolar. Study done from October 2019 to May 2021, for about 1.6 years.

SAMPLE SIZE: 150 Klebsiella pneumoniae isolates

Inclusion criteria:

• All *Klebsiella pneumoniae species* isolated from various clinical samples were included in our study.

Exclusion criteria:

- Patient who refused to give the informed consent for the study.
- *Klebsiella pneumoniae* isolated from stool samples were excluded from the study.

A total of **150** *Klebsiella pneumoniae* species isolated from different clinical samples: K. pneumoniae isolated from Pus sample (n = 51), respiratory samples – sputum (n = 22) & ET samples (n = 43), Blood culture (n = 15), Urine (n = 10) and Body Fluids (n = 5), miscellaneous samples (n = 3) like vaginal sample, central line sample, ear/eye samples etc.

The clinical isolates were determined for the following virulence factors as mentioned below:

- HEMOLYSIS
- CAPSULE FORMATION
- HYPERMUCOVISCOSITY
- BIOFILM FORMATION
- SIDEROPHORE PRODUCTION
- PROTEASE

- GELATINASE
- HAEMAGGLUTINATION ASSAY
- LIPASE
- LECITHINASE ACTIVITY

METHODOLOGY FOR DETECTION OF VIRULENCE FACTORS:

HEMOLYSIS: *Klebsiella pneumoniae* colonies were inoculated on routine sheep blood agar at 37° C & then looked for hemolysis around the colonies. ^[5]

NON -HEMOLYTIC SAMPLES ON BLOOD AGAR

FIG: 14

<u>DETECTION OF CAPSULE</u>: Overnight incubated *Klebsiella pneumoniae* colony was taken on a clean slide, smear stained with methylene blue for 2 mins, then washed with tap water & then a drop of India ink stain was added, with a cover slip on the smear was examined under light microscope.^[5]

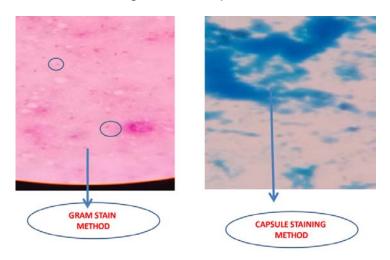


FIG: 15

HYPER MUCOVISCOSITY [HV]: MODIFIED STRING TEST

Klebsiella pneumoniae isolate was inoculated on routine sheep blood agar media, incubated at 37°c for 24 hours. Then a standard inoculation loop was used to demonstrate the string test by touching the colony and gently lifting it. ^[5,8,20]

FIG : 16 - An observation of > 5mm length of string formation was taken as positive for hypermucoviscosity. [7,22]

BIOFILM FORMATION:

96 well Microtitre plate method is commonly used to demonstrate the biofilm formation by *Klebsiella pneumoniae isolates* in various samples.

METHOD: 200µl of overnight luria broth (LB) culture was transferred to a 96 well micro titre plate in triplets. Isolates sub cultured on Lysogeny Broth was incubated for 24 hr at 37° C. Further 25µl of 1% crystal violet was added to each well and incubated for 15 mins at room temperature. Wells were washed thrice with phosphate buffer solution (PBS) and ethanol was added to dissolve the strain. [8,18, 23, 34,35]

BIO FILM TESTING:

FIG: 17

<u>Interpretation of Biofilm production</u>: After testing the isolates, microtitre plate was assessed by looking at the intensity of coating of the wells with crystal violet stain. As strong positive / negatively stained wells. [34,35]

SIDEROPHORES:

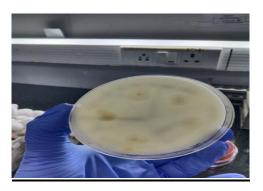
Nutrient agar supplemented with 200mM of 2.2 –dipyridyl is used as Iron – restricted agar medium. *Klebsiella pneumoniae* isolates will be streaked on agar plates & then incubated at 37° C for 24 hrs. Any bacterial growth will be considered positive for Siderophore production. [11, 18]

SIDEROPHORE TEST

CHEMICALS USED FOR THE TEST

POSITIVE & NEGATIVE ISOLATES SHOWN IN THIS PICTURE

FIG: 18


Media preparation for siderophore test:[11]

- a) Solution-1 (prepared by dissolving 3 g Na2HPO3, 1.5 g KH2PO4, 0.5 g NH4Cl and 10 g agar in 475 ml of distilled water), then sterilized in autoclave at 121°C.
- b) Solution- 2 (prepared as followed 2 ml of (1M) MgSO4, 10 ml of (20%) glucose, 0.1 ml of (1M) CaCl2 sterilized by filtration).

Solution 2 was added to solution 1 (after cooling to 50°C), then 0.01562 g of (200) µm of Dipyridyl added. Overnight-activated isolates inoculated to this media and incubated in 37°C for 24 hr, the results based on the presence of growth or not.

PROTEASE:

Klebsiella pneumoniae was inoculated on freshly prepared milk agar and incubated at 37° c for 72 hrs, formation of turbidity around the colonies – demonstrate protease production.^[7]

<u>Interpretation of the test</u>: Development of any growth at stab inoculated sites were considered as positive & no growth at the inoculation were considered as negative for the test.

GELATINASE:

Nutrient agar plate with 3% gelatin was prepared, colony was inoculated & incubated for 16 hrs at 37° C, then extra 5 hrs in refrigeration (at 4°c). A zone of turbidity around the colonies was taken as positive samples.^[7]

GELATIN SPOT INOCULATION : FOR GELATINASE :

FIG: 20

<u>Interpretation of the test</u>: Development of any growth at stab inoculation sites were considered as positive & no growth at the inoculation were considered as negative for the test.

HAEMAGGLUTINATION ASSAY:

- **d- MANNOSE by slide METHOD:** The isolate of *Klebsiella pneumoniae* was inoculated in nutrient broth and incubated at 37°C for 48 hours (was allowed for full fimbriation). Then O+ve blood was collected and washed thrice in normal saline and 3% suspension was made in fresh saline. This was used immediately or (within a week, if stored at 3 -5°C temperature). This test was carried out on a multiple concavity slide.
 - a) Mannose sensitive haemagglutination: was detected by absence of haemagglutination, when a drop of 2% d-mannose was added to red cells and drop of broth culture.
 - **b) Mannose resistant haemagglutination:** was detected by presence of haemagglutination of 3% O -blood group human RBC in presence of 2% mannose. [6, 13]

Haemagglutination Test: with D- mannose sugar & O + ve pooled blood suspension. RBC's are crenated, but not hemagglutinated, as there is no clumping

FIG: 21

LIPASE ACTIVITY:

Klebsiella pneumoniae isolate grown on blood agar was re-inoculated on egg-yolk agar & was incubated at 37^o C for one day. Then plates were flooded with copper sulphate solution for 20 mins, removed the excess solution and plate was allowed to dry. If opalesence of greenish blue colour developed it was taken as positive for lipase activity.^[7]

PREPARATION OF MEDIA FOR LIPASE & LECITHINASE

LECITHINASE ACTIVITY:

Klebsiella pneumoniae isolated from nutrient agar was re-inoculated on egg-yolk agar, incubated for 37⁰ C for 24 hrs then the plates were sprayed with copper sulphate solution for 20 mins, drain off the excess solution & plate was allowed to dry.

<u>Interpretation of Lipase & Lecithinase test</u>: If there is zone of clearance around the colonies it was considered as positive for this test. For lipase production – development of bluish green type of colonies even after removing excess copper sulphate were considered as positive test results. ^[7]

METHODOLOGY FOR DETECTION OF ANTIMICROBIAL RESISTANCE:

According to **Kirby Bauer Disk diffusion method**, a lawn culture of *Klebsiella pneumonia* will be done on Mueller Hinton Agar [MHA] and antibiotic discs will be placed and incubated for 18- 24 hours. Based on the zone size, the isolates will be classified as sensitive, moderately sensitive and resistance as per the CLSI [Clinical and Laboratory Standards Institute] guidelines.^[22]

The gram negative antibiotic panel for routine antibiotic susceptible testing will be as follows:

 Piperacillin, Piperacillin –Tazobactam, Ampicillin, Amoxicillin- Clavulanate, Gentamicin, Amikacin, Tobramycin, Cefotaxime, Ceftriaxone, Ceftazidime, Ceftazidime -Clavulanic Acid, Cefoxitin, Ciprofloxacin, Levofloxacin, Imipenem, Meropenem, Ertapenem, Trimethoprim –Sulfamethoxazole (COT), Chloramphenicol, Doxycycline, Nitrofurantoin & Norfloxacin [For Urine Sample Only]

<u>KPC positive samples:</u> detected by **KPC Hi Media agar**, when blue- green colonies are produced on culture plate it will be considered as positive for Carbapenem resistance.^[8]

Klebsiella pneumoniae on KPC plate:

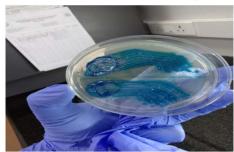
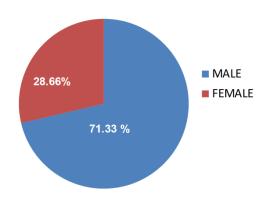



FIG: 23

STATISTICAL INPUTS : In our study only descriptive statistics was used, Pearson Chi square tried for p-value with type of samples to virulence factors – nothing significant, but based on gender association with virulence factors – HMV (Chi square = 0.488, p = 0.485), siderophore (Chi square = 1.220, p = 0.543), milk agar for protease (Chi square = 0.033, p = 0.857), for gelatinase test (Chi square = 0.188, p = 0.665), for lipase test (Chi square = 1.657, p = 0.198), for lecithinase test (Chi square = 0.299, p = 0.585), for biofilm production (Chi square = 7.944, p = 0.005).

Table 6: Gender wise distribution

Gender	No: of patients (%), n = 150
Male	107 (71.33 %)
Female	43 (28.67 %)

Table 7: Age wise distribution of Klebsiella pneumoniae isolates in the study

Age distribution	Distribution of isolates based on age of the patients (n=150), (%)
0 - 10 yrs	12 (8 %)
11 – 20 yrs	8 (5.33 %)
21 - 30 yrs	16 (10.66 %)
31 - 40 yrs	18 (12.0 %)
41 - 50 yrs	24 (16.0 %)
51 – 60 yrs	25 (16.66 %)
61 – 70 yrs	28 (18.67 %)
71 – 80 yrs	16 (10.66 %)
More than 81 yrs	3 (2.0 %)

Table 8: Type of samples collected in our study

Type of samples	No: of isolates (%)
Pus sample	51 (34 %)
Endotracheal tube (ET) sample	43 (28.67 %)
Sputum	22 (14.66 %)
Blood culture	15 (10.0 %)
Urine	10 (6.67 %)
Fluids (CSF, pleural, Peritoneal, Synovial fluids)	5 (3.33 %)
Miscellaneous (Ear, eye swab, vaginal sample)	4 (2.67 %)

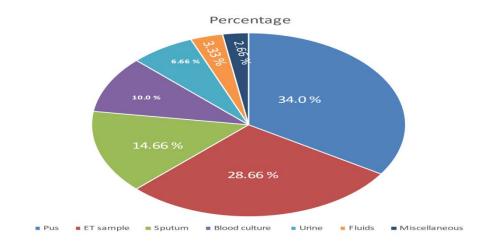


Table 9 :Distribution of *Klebsiella pneumoniae* samples positive for virulence factors

S. No	Detection of various virulence factors by phenotypic methods	Klebsiella pneumoniae samples positive for virulence factors (%)
1	Hemolysis	7 (4.66 %)
2	Capsule	150 (100.0 %)
3	Hypermucoviscosity (HMV)	66 (44.0 %)
4	Biofilm Formation	81 (54.0 %)
5	Siderophore Production	110 (73.33 %)
6	Protease	135 (90.0 %)
7	Gelatinase Test	126 (84.0 %)
8	Lipase	119 (79.33 %)
9	Lecithinase Activity	82 (54.66 %)

Table 10 : Antibiogram pattern of *Klebsiella pneumoniae* samples

Drug Name	No: of Resistant Isolates (%)	
β- lactam group of drugs		
Piperacillin (PI)	136 [90.66 %]	
Piperacillin & Tazobactam (PIT)	101 [67.33 %]	
Ampicillin (AMP)	150 [100.0 %]	
Amoxicillin & clavulanic acid (AMC)	136 [90.66 %]	
Cefotaxime (CTX)	126 [84.0 %]	
Ceftriaxone (CTR)	124 [82.66 %]	
Ceftazidime (CAZ)	124 [82.66 %]	
Ceftazidime with clavulanic acid (CAC)	107 [71.33 %]	
Cefoxitin (CX)	101 [67.33 %]	
Aminogly	cosides	
Gentamicin (GEN)	98 [65. 33 %]	
Tobramycin (TOB)	108 [72. 0 %]	
Amikacin (AK)	99 [66. 0 %]	
Fluoroquii	nolones	
Ciprofloxacin (CIP)	113 [75. 33 %]	
Levofloxacin (LE)	106 [70. 66 %]	
Carbapenem group		
Imipenem (IMP)	95 [63.33 %]	
Meropenem (MRP)	105 [70.0 %]	
Ertapenem (ETP)	94 [62.66 %]	
Others		
Cotrimoxazole (COT)	107 [71.33 %]	
Chloramphenicol (C)	58 [38.66 %]	
Doxycycline (DOX)	119 [79. 33 %]	

Table 11: Types of antimicrobial pattern in our study

Types of antimicrobial pattern in our study	No: of isolates (%) , n = 150
ESBL type	25 (16.67 %)
AmpC producers	22 (14.67 %)
MDR	116 (74.20 %)
XDR	30 (20.0 %)
PDR	42 (28.0 %)
Imipenem (IMP) resistance	95 (63.33 %)
Meropenem (MRP) resistance	105 (70.0 %)
Ertapenem (ETP) resistance	94 (62.66 %)

Note: "Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Food & Drug administration, USA (FDA).

- 1. MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories,
- 2. XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and
- 3. PDR was defined as non-susceptibility to all agents in all antimicrobial categories". [50]

ASSOCIATION BETWEEN EACH VIRULENCE FACTORS & ANTIMICROBIAL RESISTANCE OBSERVED (Tables: 12 – 20)

Table: 12 Association between antibiotic resistance & Hemolysis (n = 7)

DRUG NAME	DRUG RESISTANCE (NO: OF ISOLATES), (%)
PI (Piperacillin)	5 (71.42 %)
PIT (Piperacillin & Tazobactam)	2 (28.57%)
AMP (Ampicillin)	7 (All resistant)
AMC (Amoxicillin & clavulanic acid)	5 (71.42%)
CTX (Cefotaxime)	4 (57.14%)
CX (Cefoxitin)	1 (14.28 %)
CTR (Ceftriaxone)	3 (42.85 %)
CAC (Ceftazidime with clavulanic acid)	3 (42.85 %)
CAZ (Ceftazidime)	3 (42.85 %)
IMP (Imipenem)	1 (14.28 %)
MRP (Meropenem)	2 (28.57 %)
ETP (Ertapenem)	1 (14.28 %)
AK (Amikacin)	2 (28.57 %)
GEN (Gentamicin)	3 (42.85 %)
TOB (Tobramycin)	3 (42.85 %)
CIP (ciprofloxacin)	3 (42.85 %)
LE (levofloxacin)	3 (42.85 %)
DOX (Doxycycline)	3 (42.85 %)
C (Chloramphenicol)	2 (28.57 %)
COT (Cotrimoxazole)	3 (42.85 %)

Table: 13 Association between Capsule production & antibiotic resistance (n = 150)

DRUG NAME	DRUG RESISTANCE (NO: OF
	ISOLATES), (%)
PI (Piperacillin)	136 [90.66 %]
PIT (Piperacillin & Tazobactam)	101 [67.33 %]
AMP (Ampicillin)	150 [100.0 %]
AMC (Amoxicillin & clavulanic acid)	136 [90.66 %]
CTX (Cefotaxime)	126 [84.0 %]
CX (Cefoxitin)	101 [67.33 %]
CTR (Ceftriaxone)	124 [82.66 %]
CAC (Ceftazidime with clavulanic acid)	107 [71.33 %]
CAZ (Ceftazidime)	124 [82.66 %]
IMP (Imipenem)	95 [63.33 %]
MRP (Meropenem)	105 [70.0 %]
ETP (Ertapenem)	94 [62.66 %]
AK (Amikacin)	99 [66. 0 %]
GEN (Gentamicin)	98 [65. 33 %]
TOB (Tobramycin)	108 [72. 0 %]
CIP (ciprofloxacin)	113 [75. 33 %]
LE (levofloxacin)	106 [70. 66 %]
DOX (Doxycycline)	119 [79. 33 %]
C (Chloramphenicol)	58 [38.66 %]
COT (Cotrimoxazole)	107 [71.33 %]

Table: 14 Association between siderophore production & antibiotic resistance (n = 110)

DRUG NAME	DRUG RESISTANCE (NO: OF ISOLATES), (%)
PI (Piperacillin)	100 (90.91 %)
, ,	, , ,
PIT (Piperacillin & Tazobactam)	76 (69.09 %)
AMP (Ampicillin)	100 %
AMC (Amoxicillin & clavulanic acid)	102 (92.72 %)
CTX (Cefotaxime)	93 (84.54 %)
CX (Cefoxitin)	75 (68.18 %)
CTR (Ceftriaxone)	92 (83.63 %)
CAC (Ceftazidime with clavulanic acid)	80 (72.73 %)
CAZ (Ceftazidime)	91 (82.72 %)
IMP (Imipenem)	68 (61.81 %)
MRP (Meropenem)	78 (70.91 %)
ETP (Ertapenem)	71 (64.54 %)
AK (Amikacin)	76 (69.09 %)
GEN (Gentamicin)	74 (67.27 %)
TOB (Tobramycin)	80 (72.73 %)
CIP (ciprofloxacin)	84 (76.36 %)
LE (levofloxacin)	80 (72.73 %)
DOX (Doxycycline)	86 (78. 18 %)
C (Chloramphenicol)	42 (38. 18 %)
COT (Cotrimoxazole)	80 (72.73 %)

Table: 15 Association between hyper mucoviscosity & antibiotic resistance (n = 66)

DRUG NAME	DRUG RESISTANCE (NO: OF ISOLATES), (%)
PI (Piperacillin)	59 (89.39 %)
PIT (Piperacillin & Tazobactam)	43 (65.15 %)
AMP (Ampicillin)	100 %
AMC (Amoxicillin & clavulanic acid)	59 (89.39 %)
CTX (Cefotaxime)	55 (83.33 %)
CX (Cefoxitin)	41 (62.12 %)
CTR (Ceftriaxone)	55 (83.33 %)
CAC (Ceftazidime with clavulanic acid)	44 (66.67 %)
CAZ (Ceftazidime)	54 (81.81 %)
IMP (Imipenem)	38 (57. 57%)
MRP (Meropenem)	43 (65. 15 %)
ETP (Ertapenem)	39 (59. 09 %)
AK (Amikacin)	42 (63. 63 %)
GEN (Gentamicin)	41 (62. 12 %)
TOB (Tobramycin)	46 (69. 69 %)
CIP (ciprofloxacin)	50 (75. 76 %)
LE (levofloxacin)	46 (69.70 %)
DOX (Doxycycline)	47 (71.21 %)
C (Chloramphenicol)	22 (33.33 %)
COT (Cotrimoxazole)	44 (66. 67 %)

Table : 16 Association between Biofilm formation & antibiotic resistance (n = 81)

DRUG NAME	DRUG RESISTANCE (NO: OF ISOLATES), (%)
PI (Piperacillin)	75 (92. 59 %)
PIT (Piperacillin & Tazobactam)	54 (66. 66 %)
AMP (Ampicillin)	100 %
AMC (Amoxicillin & clavulanic acid)	76 (93. 82 %)
CTX (Cefotaxime)	68 (83. 95 %)
CX (Cefoxitin)	53 (65. 43 %)
CTR (Ceftriaxone)	67 (82. 71 %)
CAC (Ceftazidime with clavulanic acid)	56 (69. 13 %)
CAZ (Ceftazidime)	67 (82. 71 %)
IMP (Imipenem)	48 (59. 25 %)
MRP (Meropenem)	55 (67. 90 %)
ETP (Ertapenem)	50 (61. 72 %)
AK (Amikacin)	56 (69. 13 %)
GEN (Gentamicin)	54 (66. 67 %)
TOB (Tobramycin)	58 (71. 60 %)
CIP (ciprofloxacin)	59 (72. 83 %)
LE (levofloxacin)	53 (65. 43 %)
DOX (Doxycycline)	63 (77. 78 %)
C (Chloramphenicol)	28 (34. 56 %)
COT (Cotrimoxazole)	59 (72. 83 %)

Table: 17 Association between Protease & antibiotic resistance (n = 135)

DRUG NAME	DRUG RESISTANCE (NO: OF ISOLATES), (%)
PI (Piperacillin)	121 (89.62 %)
PIT (Piperacillin & Tazobactam)	90 (66.67 %)
AMP (Ampicillin)	100 %
AMC (Amoxicillin & clavulanic acid)	122 (90.37 %)
CTX (Cefotaxime)	111 (82.22 %)
CX (Cefoxitin)	91 (67.40 %)
CTR (Ceftriaxone)	110 (81.48 %)
CAC (Ceftazidime with clavulanic acid)	94 (69. 62 %)
CAZ (Ceftazidime)	111 (82.22 %)
IMP (Imipenem)	87 (64.44 %)
MRP (Meropenem)	94 (69.62 %)
ETP (Ertapenem)	84 (62. 22 %)
AK (Amikacin)	87 (64.44 %)
GEN (Gentamicin)	85 (62.96 %)
TOB (Tobramycin)	95 (70.37 %)
CIP (ciprofloxacin)	100 (74.07 %)
LE (levofloxacin)	94 (69.62 %)
DOX (Doxycycline)	105 (77.78 %)
C (Chloramphenicol)	51 (37.78 %)
COT (Cotrimoxazole)	97 (71.85%)

Table: 18 Association between Lipase & antibiotic resistance(n = 119)

DRUG NAME	DRUG RESISTANCE (NO: OF ISOLATES), (%)
	100121120), (70)
PI (Piperacillin)	108 (90.75 %)
PIT (Piperacillin & Tazobactam)	82 (68. 90 %)
AMP (Ampicillin)	100 %
AMC (Amoxicillin & clavulanic acid)	106 (89. 07 %)
CTX (Cefotaxime)	99 (83. 19 %)
CX (Cefoxitin)	82 (68. 90 %)
CTR (Ceftriaxone)	98 (82. 35 %)
CAC (Ceftazidime with clavulanic acid)	85 (71. 42 %)
CAZ (Ceftazidime)	98 (82. 35 %)
IMP (Imipenem)	76 (63. 86 %)
MRP (Meropenem)	81 (68. 06 %)
ETP (Ertapenem)	73 (61. 34 %)
AK (Amikacin)	79 (66. 38 %)
GEN (Gentamicin)	77 (64. 70 %)
TOB (Tobramycin)	85 (71. 42 %)
CIP (ciprofloxacin)	87 (73. 10 %)
LE (levofloxacin)	80 (67. 22 %)
DOX (Doxycycline)	93 (78. 15 %)
C (Chloramphenicol)	45 (37. 81 %)
COT (Cotrimoxazole)	84 (70. 58 %)

Table: 19 Association between Lecithinase & antibiotic resistance (n = 82)

DRUG NAME	DRUG RESISTANCE (NO: OF ISOLATES), (%)
	100LA1L0), (70)
PI (Piperacillin)	74 (90. 24 %)
PIT (Piperacillin & Tazobactam)	58 (70. 73 %)
AMP (Ampicillin)	
AMC (Amoxicillin & clavulanic acid)	75 (91. 46 %)
CTX (Cefotaxime)	70 (85. 36 %)
CX (Cefoxitin)	54 (65. 85 %)
CTR (Ceftriaxone)	70 (85. 36 %)
CAC (Ceftazidime with clavulanic acid)	59 (71. 95 %)
CAZ (Ceftazidime)	69 (84. 14 %)
IMP (Imipenem)	55 (67. 07 %)
MRP (Meropenem)	55 (67. 07 %)
ETP (Ertapenem)	50 (60. 97 %)
AK (Amikacin)	57 (69. 51 %)
GEN (Gentamicin)	56 (68. 29 %)
TOB (Tobramycin)	62 (75. 60 %)
CIP (ciprofloxacin)	60 (73. 17 %)
LE (levofloxacin)	59 (71. 95 %)
DOX (Doxycycline)	63 (76. 82 %)
C (Chloramphenicol)	33 (40. 24 %)
COT (Cotrimoxazole)	60 (73. 17 %)

Table: 20 Association between Gelatinase & antibiotic resistance (n = 126)

DRUG NAME	DRUG RESISTANCE (NO:
	OF ISOLATES), (%)
PI (Piperacillin)	115 (91.26 %)
PIT (Piperacillin & Tazobactam)	83 (65.87 %)
AMP (Ampicillin)	150 (100 %)
AMC (Amoxicillin & clavulanic acid)	113 (89.68 %)
CTX (Cefotaxime)	105 (83.33 %)
CX (Cefoxitin)	83 (65.87 %)
CTR (Ceftriaxone)	103 (81.74 %)
CAC (Ceftazidime with clavulanic acid)	88 (69.84 %)
CAZ (Ceftazidime)	104 (82.53 %)
IMP (Imipenem)	81 (64.28 %)
MRP (Meropenem)	88 (69.84 %)
ETP (Ertapenem)	77 (61.11 %)
AK (Amikacin)	81 (64.28 %)
GEN (Gentamicin)	81 (64.28 %)
TOB (Tobramycin)	89 (70.63 %)
CIP (ciprofloxacin)	95 (75.39 %)
LE (levofloxacin)	87 (69.05 %)
DOX (Doxycycline)	98 (77.78 %)
C (Chloramphenicol)	52 (41.26 %)
COT (Cotrimoxazole)	89 (70.63 %)

DISCUSSION:

K. pneumoniae strains produce a variety of infections and employs various virulence factors to colonize and spread in the human body. The exploding antimicrobial resistance of this bacteria in recent years is of great concern to the scientific world.

Pathogenicity of *K. pneumoniae* is the result of production of many virulence factors that help these bacteria overcome the immune system and cause various diseases.

In our study, we collected 150 clinical *K. pneumoniae strains* from Pus sample, respiratory samples, Blood culture, Urine and Body Fluids.

The following 10 virulence factors were analysed in our study – Hemolysis, Capsule Formation, Hypermucoviscosity, Biofilm Formation, Siderophore Production, Protease, Gelatinase, Haemagglutination Assay, Lipase & Lecithinase Activity.

The *Klebsiella pneumoniae* isolates from our study producing capsule was 100%, this is in concordance with other study findings – Aljanaby et al, Imtiaz et al & AL -A amary et al. *Klebsiella pneumoniae has* thick polysaccharide capsule (this provides protection to bacteria against opsonization and phagocytosis by macrophages and neutrophils), due to blockade of Toll like receptors (TLR-4) & inhibit the expression of IL -8. [18,32,40]

High virulence is typical for *K. pneumoniae strains* that cause community-acquired infections, LPS protects against humoral defences and activate immune system.

The *Klebsiella pneumoniae* isolates producing siderophore was 73.33% is our study results, (Siderophore production is more from endo tracheal & pus samples in our study). This is in contrast to other studies which reported 100% in – Aljanaby et al & 100% siderophore from AL -A amary et al. [18]

Klebsiella pneumoniae strains produce siderophores (are iron chelating molecules from host cells). Types of siderophores—aerobactin, enterobactin, yersiniabactin, and colibactin for growth and survival in an infected host. Siderophoresare critical for virulence, Iron being an essential component for bacterial growth and replication, this indicates invasive properties of *K. pneumoniae* in an infection in immunocompetent people. It has been shown that the development of invasive forms of the disease is associated with the production of several siderophores by K. pneumoniae strains. (Hv-KP strains produce more siderophore molecules and in their more active form, than c-KP).

The *Klebsiella pneumoniae* isolates producing Hypermucoviscosity (HMV) detected by positive string test was 44 % in our study. The study conducted by other investigators on HMV produced from *Klebsiella pneumoniae* varies from 7 – 62 %, Aljanaby et al reported 62 %, Lee et al studied extensively on HMV – showed 14.8 % from hospital acquired *Klebsiella pneumoniae* infections & 41.5% from community acquired *Klebsiella pneumoniae* infections. But in contrast Rama Krishnan et al study done in 2019 reported only 7% and Imtiaz et al reported 22%. ^[5, 18, 20,32]

Detection of the rmp A gene in *K. pneumoniae isolates*. Hv-KP causes the most severe, invasive forms of infection in previously healthy adults (liver abscesses, meningitis, and endophthalmitis). hv-KP strains are more resistant to the complement and phagocytosis.

The *Klebsiella pneumoniae* isolates from our study producing lipase was 79.33%, this is in contrast to Rama Krishnan et al study showed 58 %, Hassan. R et al reported 33 % of their isolates positive for lipase. ^[5]

In our study the *Klebsiella pneumoniae* isolates producing biofilm are 54 % (n = 81), our study findings are in contrast to Aljanaby et al reported 100%, Imtiaz et al – showed 94% results, AL -A amary et al showed 75% & Rama Krishnan et al study showed 79 %. Our study findings are more consistent to Hassan et al findings of 67%. In contrast a study Dougnan et al (2021) reported with only 3.34 % of biofilm formation in *Klebsiella pneumoniae isolates*. $^{[5,18,32,42]}$

Our findings on hemolysis was 4.66 % this is in concordance with other findings of Imtiaz et al – showed 8 % & Hassan R et al with 7 %. Our findings are in contrast to Dougnan et al which reports 20 % for hemolysis. [32]

In our study the *Klebsiella pneumoniae* isolates producing lecithinase enzyme as virulence factor 54.66 % (n =82), this is in concordance with Rama Krishnan et al study showed 55 %. There are very few studies done on this virulence factor, our study is in contrast to Dougnan et al (2021) showed 3.34 %. [5, 18,42]

In our study the *Klebsiella pneumoniae* isolates producing protease enzyme was 90% (n =135), this is in contrast to earlier studies like Rama Krishnan et al study showed 44% & Hassan R et al which reported only 2.56 % (with only 1 isolate). ^[5]

In our study the *Klebsiella pneumoniae* isolates producing gelatinase enzyme on gelatin media was 84 % (n = 126), this findings are in contrast to Rama Krishnan et al study showed 41% & Imtiaz et al – showed 12 % only. In contrast we had higher % of gelatinase reported with *K.pneumoniae* isolates. $^{[5, 32]}$

The antibiotic resistance of *K. pneumoniae* strains is associated mainly with the production of ESBL. In 2017 the World Health Organization included ESBL-

producing *K. pneumoniae* in the list of the most dangerous superbugs along with *Acinetobacter baumanii* and *Pseudomonas aeruginosa*.

This is of great concern because some antibiotic resistance are carried by mobile genetic elements that facilitate horizontal genetic exchange and promote the spread of antimicrobial resistance within and between species.

The information from the 2017 European Antimicrobial Resistance Surveillance Network report showed more than one third of K. pneumoniae isolates were resistant to at least one of the antimicrobial groups under regular surveillance. The report showed resistance percentages for fluoroquinolones (31.5%), followed by third-generation cephalosporins (31.2%), aminoglycosides (24.1%), and carbapenems (7.2%).

Compared to the multicenter study carried out in Garcia Fernandez et al, our study findings out of 150 *K. pneumoniae isolates* showed : ESBL *K. pneumoniae 16.67* % (n = 25 isolates), AmpC producer type 14.67 % (n = 22), multi drug resistance (MDR) -74.20 % (n = 116), extensive drug resistant (XDR) -20 % (n = 30), pan drug resistant (PDR) -28 % (n = 42). [47,50]

Zhang et al reported *ESBL- K.pneumoniae* of 31.8 %, (range of 10.2 – 50.3 %) from different geographic locations of China. Abera et al reported *ESBL- K.pneumoniae* as 44.0 % in their study. A cohort study done by Xercavins et al in 2019 *showed* 52 % of ESBL hospital acquired infections. Majority of them were CTX-M 15 type reported. According to a meta analysis (Kahraman EP et al with 25 studies) conducted between 2000 – 2015 reported 39.66% ±12.46. [41]

In our study MDR isolates reported was 74.20 %, this is in contrast to a meta analysis done by Asri et al on *MDR K. pneumoniae* isolates was 32.8%, Our study is in concordance with Ferreira et al 2019 study based on genotypic analysis reported 84 % of *MDR Klebsiella pneumoniae* in their study. [43, 49]

In our study the XDR isolates were 20.0 %. Our findings are in concordance with Hassuna NA et al in 2020 showed 15.3 % of XDR isolates , and Wenzi Bi et al in 2017 showed 26.71. In their study XDR was resistant to all antibiotics except Tigecycline & Polymyxin B. In our study we have reported as resistance to all antimicrobials except chloramphenicol. [44, 45]

Our study findings on CRKP isolates were as follows: Imipenem resistance 63.33%, meropenem resistance 70% & ertapenem resistance 62.66%, Our study results are in contrast to studies Lombardi et al which reported 35% of CRKP isolates & Kahraman EP et al showed Imipenem resistance of 5.1% & meropenem resistance of 3.4% respectively. [41]

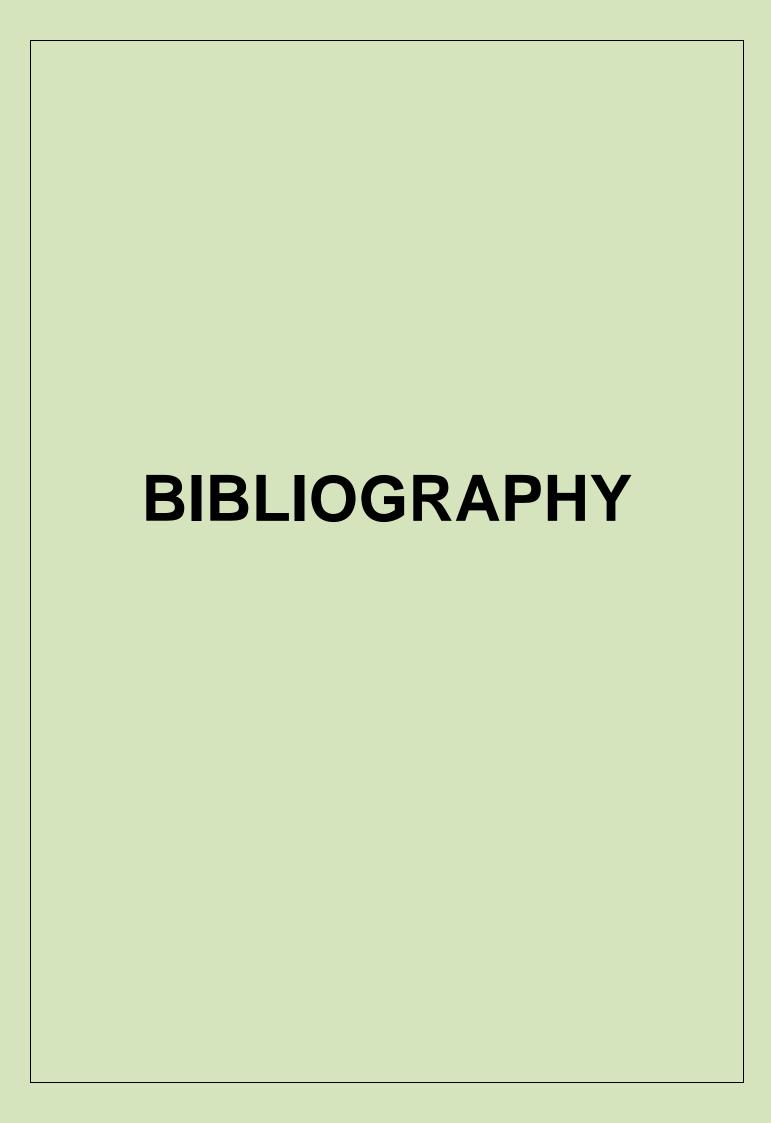
The reasons for antimicrobial drug resistance in *Klebsiella pneumoniae* could be due to diminished expression / loss of porin channels, alteration in outer membrane proteins (OMP) permeability, or efflux pump overexpression & carbapenem hydrolysis.

KPCs also inactivate all beta-lactam antibiotics and are only partially inhibited by beta-lactamase inhibitors like clavulanic acid, tazobactam and boronic acid.

The association between virulence factors & antimicrobial resistance was not significant in our study, based on our observations.

SUMMARY:

Our study was done with 150 clinical samples of *Klebsiella pneumoniae isolated* during the period of Oct 2019 to May 2021 for a period of 1 year and 6 months received at the Dept of Microbiology, R. L. Jalappa hospital, Kolar, India.

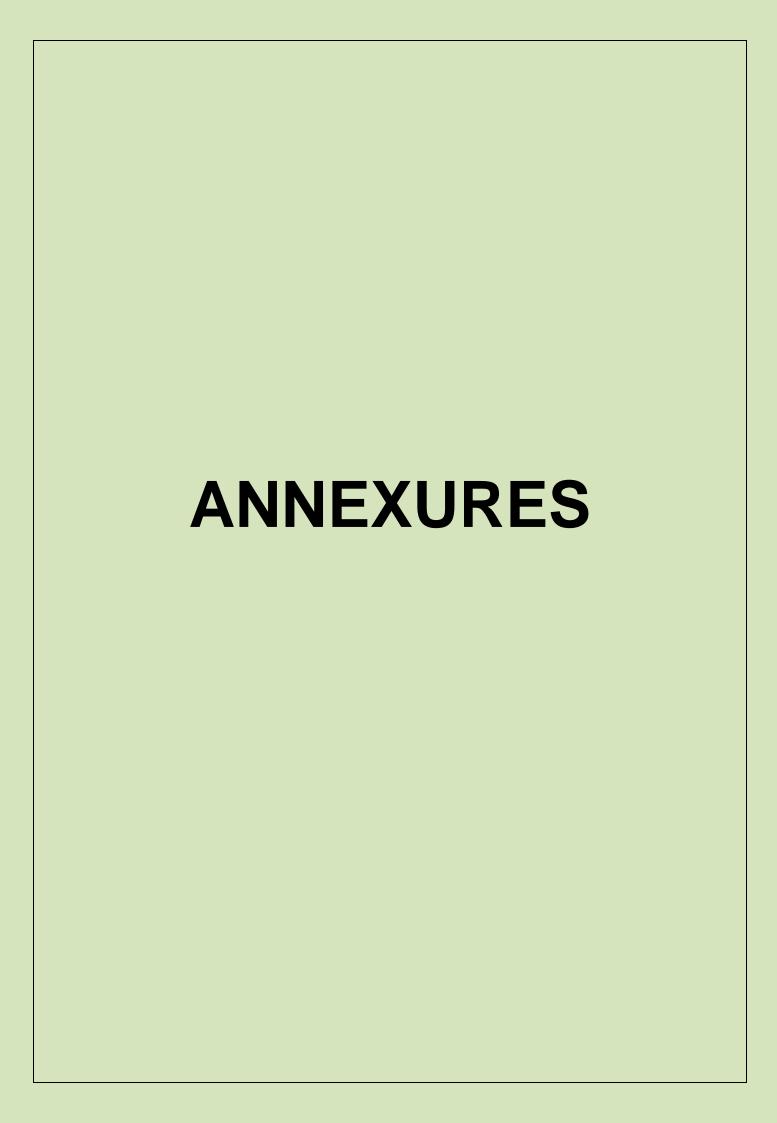

The findings of our study on virulence factors are as follows:hemolysis 4.66 %(7 isolates), capsule 100 % (150 isolates), hypermucoviscosity (HMV) formation 44 % (66 isolates), biofilm production 54 % (81 isolates), siderophore production 73.33 % (110 isolates), protease 90 % (135 isolates), gelatinase 84 % (126 isolates), lipase production 79.33 % (119 isolates), lecithinase activity 54.66 % (82 isolates).

The antimicrobial resistance pattern as follows: Piperacillin (90.66 %), Piperacillin tazobactum (67.33 %), Ampicillin (100 %), Amoxyclav (90.66 %), Cefotaxime (84 %), Ceftriaxone (82.66 %), Ceftazidime (82.66 %), Ceftazidime-clavulanic acid (71.33 %), Cefoxitin (67.33 %), Cotrimoxazole (71.33 %), Imipenem (63.33 %), Meropenem (70.0 %), Ertapenem (62.66 %), Amikacin (66 %), Gentamicin (65.33 %), Tobramycin (72.0 %), Chloramphenicol (38.66 %), Doxycycline (79.33 %), Ciprofloxacin (75.33 %), Levofloxacin (70. 66 %), Norfloxacin (66.67 %), Nitrofurantoin (77.78 %).

ESBL K. pneumoniae 16.67 % (n = 25 isolates), AmpC producer type 14.67 % (n = 22), multi drug resistance (MDR) – 74.20 % (n = 116), extensive drug resistant (XDR) – 20 % (n = 30), pan drug resistant (PDR) – 28 % (n = 42). Total carbapenem resistance in our study : average 65.33 % reported.

CONCLUSION:

The presence of several virulence factors accompanied by antimicrobial resistance had made *Klebsiella pneumoniae* an important infectious agent of global concern and lead to treatment failure. The increasing coexistence of the virulence factors & antimicrobial is of particular concern as it can lead to untreatable and invasive *K. pneumoniae* infections. Active surveillance to be done not only for antimicrobial resistance, but also for virulence determinants to avoid the transmission and spread of multidrug resistant strains. In our study a lot of *MDR K. pneumoniae* strains were observed which warrants the role of antimicrobial stewardship programme, as It is vital & plays an important role in prevention & control of *MDR K. pneumoniae* strains.


- 1. Tille PM. Bailey and Scott's Diagnostic Microbiology. 14th Ed. Missouri: Elsevier publishers (p) Ltd; 2017. p.336-354.
- 2. Podschun R, Ullmann U. Klebsiella spp as nosocomial pathogensepidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4)589-603. doi:10.1128/CMR.11.4.589
- 3. Washington Jr W, Stephan A, William J. Eds., Koneman's Color Atlas and Text book of Diagnostic Microbiology, Lippincott Williams & Wilkins, 6th edition, 2006.
- 4. Lobo AS, Moosabba MS. Antibiogram and hypermucoviscosity pattern among *Klebsiella pneumoniae isolates* from respiratory samples: A tertiary care hospital study in South India. *Int J Comprehensive Adv Pharmacol*2019;4(4):134-8.
- **5.** RamaKrishnan K, Johnsi J, Seetha KS. Clinical isolates of *Klebsiella pneumoniae* and its virulence factors from a tertiary care hospital. *Indian J Med Microbiol 2019*; 6:109- 112.
- 6. Collee, J.G., Miles, R.S. and Watt, B. (1996): Tests for the identification of bacteria. In: Mackie and Macartney Practical Medical Microbiology, 14th edn., Vol., I, pp. 413-424. Churchill Livingstone, N.Y, U.S.A.
- 7. Piperaki ET, Syrogiannopoulos GA, Tzouvelekis LS, Daikos GL. *Klebsiella pneumoniae:* Virulence, Biofilm and Antimicrobial Resistance. *Pediatric Infect Dis J 2017*; 36: 1002-1005.
- 8. Barrow, G.I. and Feltham, R.K. (1993): Cowan and Stell's Manual for the identification of Medical Bacteria 3rd ed., University press, Cambridge, U.k: 136-38.
- 9. RamaKrishnan K, Kali A, Sah S, Pagal S, Kenchappa P, Seetha KS. Molecular Profile of Emerging Multidrug Resistant *Klebsiella pneumoniae* Clinical Isolates from Southern India. *J Clin Diagn Res* 2019; 13: 01-06.
- 10. Khaertynov KS et al. Virulence factors and antibiotic resistance of *Klebsiella pneumoniae strains* isolated from neonates with sepsis. *Front Med 2018*; *5*: 225.
- 11. Zaki NH, Alwan AH, and Abas SM. "New Natural Medium Using Vitis vinirfera for Siderophore Production from Clinical Isolates of Klebsiella pneumonia". , Appli Micro Open Access 2016, 2:3 DOI: 10.4172/2471-9315.1000118.
- 12. Hennequin C, Robin F. Correlation between antimicrobial resistance and virulence in *Klebsiella pneumoniae*. *Eur J ClinMicrobiol Infect Dis* 2016;35: 333-41.
- 13. Zhu J, Wang T, Chen L and Du H (2021) Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 12:642484. doi:10.3389/fmicb.2021.642484.
- 14. https://www.ncbi.nlm.nih.gov/books/NBK519004/
- 15. Manoharan A, Barla GS, Peter R, Sugumar M, Mathai D. Multidrug resistance mediated by co-carriage of ESBL, AmpC and New Delhi

- metallo beta lactamase-1 genes among carbapenem resistant Enterobacteriaceae at five Indian medical centres. *Indian J Med Microbiol* 2016; 34: 359-361.
- 16.W. H. Ewing, *Edwards and Ewing's Identification of Enterobacteriaceae*, Elsevier Science Publishing Co. Inc., Amsterdam, Netherlands, 1986.
- 17. Kalem F, Ergun AG et al. Colistin resistance in Carbapenem resistant *Klebsiella pneumoniae* strains. *Biomed Res 2016;* 27: 368-372.
- **18.** Aljanaby AAJ, Alhasani AHA. Virulence factors and antibiotic susceptibility patterns of multidrug resistance *Klebsiella pneumoniae* isolated from different clinical infections. *Afr J Microbiol Res* 2016; 10:829-843.
- 19. Veeraraghavan B, Walia K. Antimicrobial susceptibility profile and resistance mechanisms of Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens from India. *Indian J Med Res* 2019; 149: 87-96.
- 20. Lee HC, Chuang YC, Yu WL, Lee NY, Chang CM, Ko NY et al. Clinical implications of hypermucoviscosity phenotype in *Klebsiella pneumoniae* isolates: association with invasive syndrome in patients with Community Acquired bacteremia. *J Intern Med* 2006; 259: 606-614.
- 21. Vagarali M., Karadesai S., Patil C., Metgud S., Mutnal M. Haemagglutination and siderophore production as the urovirulence markers of *uropathogenicEscherichia coli*. *Indian J Med Microbiol 2008*; 26(1):68–70.
- 22. Clinical Laboratory Standards Institute, *Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100*, Clinical Laboratory Standards Institute, Pittsburgh, PA, USA, 29 th edition, 2019.
- 23. Bellifa S, Hassaine H, Balestrino D, Charbonnel N, Mohamedi I, Terki IK et al. Evaluation of biofilm formation of *Klebsiella pneumoniae* isolated from medical devices at theUniversity Hospital of Tlemcen, *Algeria Afr J Microbiol Res 2013*; 7:5558-5564.
- 24. Effah CY, Sun T, Liu S, Wu Y. "Klebsiella pneumoniae: an increasing threat to public health". Ann Clin Microbiol Antimicrob 2020; 19:1, pg 1-9.
- 25. <u>Ding L, Yang Z, Lu J, Ma L, Liu Y, Wu X, et al.</u> Characterization of Phenotypic and Genotypic Traits of Klebsiella pneumoniae from Lung Cancer Patients with Respiratory Infection. Infect Drug Resist 2020; 13: 237 -245.
- 26. Remya PA, Shanthi M, Sekar U. Characterisation of virulence genes associated with pathogenicity in *Klebsiella pneumoniae*. Indian J Med Microbiol 2019;37:210-8.
- 27. Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, et al. "Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia". BMC proceedings 2019; 13(suppl 11): 1-8.
- 28. <u>www.himedialabs.com</u> for KPC agar and 2.2` dipyridyl molecule for siderophore test.

- 29. Parrott AM et al., Detection of multiple hypervirulent Klebsiella pneumoniae strains in a New York City hospital through screening of virulence genes, *Clin Microbiol and Infect*, [PMID: **32461145.** DOI: 10.1016/j.cmi.2020.05.012
- 30. Jasim SA, Abdulrazzaq SA, Hashoosh SI, Saleh RO. Virulence Factors of *Klebsiella pneumoniae* Isolates from Iraqi Patients. *Sys Rev Pharm 2020;* 11(6): 916 921.
- 31. Hasani A, Soltani E, AhangarzadehRezaee M, Pirzadeh T, AhangarOskouee M, Hasani A, Gholizadeh P, NoieOskouie A, Binesh E. Serotyping of *Klebsiella pneumoniae* and Its Relation with Capsule-Associated Virulence Genes, Antimicrobial Resistance Pattern, and Clinical Infections: A Descriptive Study in Medical Practice. *Infect Drug Resist.* 2020;13:1971-1980.
- 32. Imtiaz W, Syed Z, Rafaque Z, Andrews SC, Dasti JI. "Analysis of Antibiotic Resistance and Virulence Traits (Genetic and Phenotypic) in *Klebsiella pneumoniae* Clinical Isolates from Pakistan: Identification of significant levels of Carbapenem and Colistin Resistance". *Infect Drug Resist.* 2021;14:227-236.
- 33. Chen CM, Wang M, Li XP, Li PL, Tian JJ, Zhang K et al. "Homology analysis between clinically isolated extraintestinal and enteral *Klebsiella pneumoniae* among neonates". BMC Microbiol 2021;21: 25.
- 34. G. A. O'Toole, "Microtiter dish biofilm formation assay," *Journal of Visualized Experiments :JoVE*, vol. 30, no. 47, Article ID e2437, 2011.
- 35. Karimi K, Zarei O, Sedighi P, Taheri M, Irani AD, Shokoohizadeh L. "Investigation of **Antibiotic Resistance and Biofilm Formation in Clinical Isolates of** *Klebsiella pneumoniae*". International Journal of Microbiology (Volume 2021, Article ID 5573388), 6 pages. https://doi.org/10.1155/2021/5573388.
- 36. Martin RM and Bachman MA. "Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae". Front. Cell. Infect. Microbiol. (2018); 8:4. doi: 10.3389/fcimb.2018.00004.
- 37. Bengoechea JA, Pessoa JS. *Klebsiella pneumoniae* infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 123 -144.
- 38. Zahller J, Stewart PS. Transmission electron microscopic study of antibiotic action on *Klebsiella pneumoniae* biofilm. *Antimicrob Agents Chemother*. 2002;46(8):2679-2683. doi:10.1128/AAC.46.8.2679-2683.2002.
- 39. https://nihrecord.nih.gov/2021/03/19/study-shows-promising-therapy-drug-resistant-klebsiella-pneumoniae

- 40. Branger J, Knapp S, Weijer S *et al.* Role of Toll-like receptor 4 in grampositive and gram-negative pneumonia in mice. *Infect Immun*2004;**72**:788–94.
- **41.**Kahraman EP, Çiftcia IH (2017) The Antibiotic Resistance Patterns of *Klebsiella pneumoniae* Clinic Isolates: A Comprehensive Meta-Analysis. Open J Bac 1(1): 021-026.
- 42. Dougnon, V., Assogba, P., Mohammed, J., Agbankpe, J., Deguenon, E., Fabiyi, K., Dougnon, J., Baba-Moussa, L., & Bankole, H. (2021). Urinary Tract Infections in Benin: Exploring the Virulence Factors and Antibiotic Resistance and Virulence Genes among Bacterial Isolates. *International Journal of Pathogen Research*, 7(1), 28-36. https://doi.org/10.9734/ijpr/2021/v7i130174.
- 43. Mohd Asri, N.A.; Ahmad, S.; Mohamud, R.; Mohd Hanafi, N.; Mohd Zaidi, N.F.; Irekeola, A.A.; Shueb, R.H.; Yee, L.C.; Mohd Noor, N.; Mustafa, F.H.; et al. Global Prevalence of Nosocomial Multidrug-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10,1508. https://doi.org/10.3390/antibiotics10121508.
- 44. Bi W, Liu H, Dunstan RA, Li B, Torres VVL, Cao J et al. Extensively Drug-Resistant *Klebsiella pneumoniae* Causing Nosocomial Bloodstream Infections in China: Molecular Investigation of Antibiotic Resistance Determinants, Informing Therapy, and Clinical Outcomes. *Front Microbiol.* 2017;8:1230. doi:10.3389/fmicb.2017.01230.
- 45. Hassuna NA, AbdelAziz RA, Zakaria A, Abdelhakeem M. Extensively-Drug Resistant *Klebsiella pneumoniae* Recovered From Neonatal Sepsis Cases From a Major NICU in Egypt. *Front Microbiol*. 2020;11:1375. doi:10.3389/fmicb.2020.01375.
- 46. Gill MK, Gill AK, Khanna A. Antibiogram of Klebsiella pneumoniae isolated from various clinical samples of hospitalized patients in a tertiary care hospital of North India. Trop J Pathol Microbiol. 2019;5(8):512-516.
- 47. Garcia-Fernández, S., Garcia-Castillo, M., Bou, G., Calvo, J., Cercenado, E., Delgado, M., et al. (2019). Activity of Ceftolozane/Tazobactam AgainstPseudomonas Aeruginosa and Enterobacterales Isolates Recovered FromIntensive Care Unit Patients in Spain: The Superior Multicentre Study. Int. J. Antimicrob. Agents 53, 682–688. doi: 0.1016/j.ijantimicag.2019.02.004.
- 48. Reyes J, Aguilar AC, Caicedo A. Carbapenem-Resistant *Klebsiella pneumoniae*: Microbiology Key Points for Clinical Practice. *Int J Gen Med.* 2019;12:437-446. Published 2019 Nov 28. doi:10.2147/IJGM.S214305.
- 49. Ferreira RL, da Silva BCM, Rezende GS, Nakamura-Silva R, Pitondo-Silva A, Campanini EB, Brito MCA, da Silva EML, Freire CCM, Cunha AF and Pranchevicius MC (2019) High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and _-Lactamase

- Encoding Genes in a Brazilian Intensive Care Unit. Front. Microbiol. 9:3198. doi: 10.3389/fmicb.2018.03198.
- 50. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance ".Clin Microbiol Infect 2012; 18: 268–281.

INFORMED CONSENT TO PARTICIPATE IN THE STUDY

DATE: SERIAL NO:

LAB NO:

TITLE: PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND ANTIBIOGRAM OF *KLEBSIELLA PNEUMONIAE* ISOLATED FROM DIFFERENT CLINICAL SPECIMENS – A CROSS SECTIONAL STUDY.

I have read / the investigator has read the purpose of this study. I understand that my clinical sample sent to CDLS lab, Sri Devaraj Urs Medical College, which yields *Klebsiella pneumonia*, will be analysed for virulence factors and antimicrobial resistance.

I am aware that there is no benefit to me, apart from the treatment I receive at the hospital, there is no compensation involved.

I have been informed this study is done for the betterment of mankind in future. Hence, I agree to participate in this study by my free will.

NAME [PATIENT]: SIGNATURE / THUMB IMPRESSION

NAME

[WITNESS / RELATIVE]: SIGNATURE / THUMB

IMPRESSION

For any further clarification you can contact the study investigator:

Dr. Madhavi S Hullur

Mobile no: 9844746666.

Email:dr.msh@yahoo.com

PATIENT INFORMATION SHEET

SERIAL NO:

TITLE: PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND ANTIBIOGRAM OF *KLEBSIELLA PNEUMONIAE* ISOLATED FROM DIFFERENT CLINICAL SPECIMENS – A CROSS SECTIONAL STUDY.

PURPOSE OF THE STUDY: *Klebsiella pneumoniae* is a gram negative, non-motile, capsulated organism. It is ubiquitous in nature, known to cause community acquired and hospital acquired infection.

Nosocomial infections are caused by a variety of organisms. *Klebsiella pneumoniae* produces life threatening nosocomial infections.

With the emergence of multi drug resistance [MDR] clones and global dissemination of hypervirulent strains have renewed the interest in *Klebsiella pneumoniae*. The interplay between virulence factors and antibiotic resistance of *Klebsiella pneumoniae* strains will be studied further in our attempt.

PROCEDURE FOLLOWED: When *Klebsiella pneumoniae* is isolated from your clinical sample, patient demographic & clinical details will be collected as per a predesigned proforma.

The *Klebsiella pneumoniae* isolates will be analysed for virulence factors and antimicrobial resistance.

RISKS AND BENEFITS: Participation in this study is purely voluntary. There is no risk involved in the study. You will be given appropriate treatment for your disease as per hospital norms, but you will not be given any compensation for participation in this study.

CONFIDENTIALITY: All information that you provide will be kept confidential, no mention of your name or other information will appear on samples or in any publication in connection to this study.

PROFORMA

LAB NO:

Serial no:

TITLE: PHENOTYPIC CHARACTERIZATION OF VIRULENCE FACTORS AND
ANTIBIOGRAM OF KLEBSIELLA PNEUMONIAE ISOLATED FROM DIFFERENT CLINIC
SPECIMENS - A CROSS SECTIONAL STUDY.
NAME:
AGE
SEX:
ADDRESS:
ADDITEO.
PHONE NO:
UHID NO:
CLINICAL DIAGNOSIS [As mentioned on Lab request form]:
SAMPLE TYPE COLLECTED:
CLINICAL ISOLATE COLLECTED : KLEBSIELLA PNEUMONIAE

The clinical isolates will be determined for the following virulence factors as mentioned below:

VIRULENCE FACTORS:	
HEMOLYSIS	
CAPSULE FORMATION	
HYPERMUCOVISCOSITY	
BIOFILM FORMATION	
SIDEROPHORE PRODUCTION	
• PROTEASE	
GELATINASE	
HAEMAGGLUTINATION ASSAY	
• LIPASE	
LECITHINASE ACTIVITY	
ANTIBIOTIC RESISTANCE PATTERN:	
• <u>20 - disk plate</u> :	
1. AMPICILLIN [AMP]	
2. GENTAMICIN [GEN]	
3. AMIKACIN [AK]	
4. AMOXICILLIN-CLAVULANATE [AMC]	
5. PIPERACILLIN [PI]	
6. PIPERACILLIN-TAZOBACTAM [PIT]	
7. CEFOTAXIME [CTX]	

- 8. CEFTRIAXONE [CTR]

 9. CEFTAZIDIME [CAZ]

 10. CEFTAZIDIME —CLAVULANIC ACID [CAC]

 11. CIPROFLOXACIN [CIP]

 12. LEVOFLOXACIN [LE]

 13. IMIPENEM [IMP]

 14. MEROPENEM [MRP]
 - 15. ERTAPENEM [ETP]
 - 16. TRIMETHOPRIM
 SULFAMETHOXAZOLE
- 17. CHLORAMPHENICOL [C]
- 18. TETRACYCLINE [TE]
- 19. TOBRAMICIN [TOB]
- 20. DOXYCYCLINE [DO]

URINE:

- 1. NITROFURANTOIN
- 2. NORFLOXACIN
- COLISTIN strip [EM -020]
- Himedia –KPC agar plate

1) VIRULENCE FACTORS:

SI.	GEND ER	AGE GRO UP	SAMPLE TYPE	HEMOLY SIS	CAPSU LE STAIN	HM V Te st	SIDEROPH ORE	Mil k ag ar	Gelatin ase	Lipa se	Lecithin ase	Hemagglutin ation	Biofilm formatio n
1	М	64	PUS	no	YES	No	SP	Р	Р	NO	NO	NO	NO
2	М	50	PUS	no	YES	ye s	SP	Р	Р	NO	NO	NO	NO
3	F	59	PUS	no	YES	ye s	SP	Р	Р	NO	NO	NO	NO
4	М	45	PUS	no	YES	No	SP	Р	Р	NO	NO	NO	NO
5	F	86	SPUTUM	no	YES	ye s	SP	Р	Р	Р	NO	NO	POSITI VE
6	F	55	PUS	no	YES	ye s	N	Р	Р	Р	POSITI VE	NO	NO
7	М	71	ET- SAMPLE	no	YES	No	SP	Р	Р	Р	POSITI VE	NO	POSITI VE
8	М	27	SPUTUM	no	YES	ye s	SP	Р	Р	Р	NO	NO	NO
9	M	44	PUS	no	YES	ye s	SP	P	P	P	POSITI VE	NO	POSITI VE
			BLOOD								POSITI		POSITI
10	M	55	BLOOD	no	YES	No	SP	Р	Р	Р	VE POSITI	NO	VE
11	М	48	CULTURE ET-	no	YES	No	Р	Р	Р	NO	VE POSITI	NO	NO POSITI
12	М	82	SAMPLE	no	YES	ye s	SP	Р	Р	NO	VE	NO	VE
13	F	32	URINE	no	YES	No	SP	Р	Р	Р	POSITI VE	NO	POSITI VE
14	М	65	SPUTUM	no	YES	ye s	SP	Р	Р	NO	POSITI VE	NO	POSITI VE
15	М	62	ET- SAMPLE	no	YES	ye s	SP	Р	Р	Р	NO	NO	NO
16	М	56	ET- SAMPLE	no	YES	ye s	SP	Р	Р	Р	NO	NO	NO
17	F	60	PUS	no	YES	No	SP	N	NO	NO	NO	NO	NO
18	F	55	ET- SAMPLE	no	YES	No	SP	N	Р	Р	POSITI VE	positive	POSITI VE
19	М	79	BLOOD CULTURE	no	YES	No	SP	N	NO	Р	NO	NO	POSITI VE
20	М	DAY - 6	ET- SAMPLE	no	YES	ye s	SP	N	Р	Р	NO	NO	POSITI VE
21	М	70	ET- SAMPLE	no	YES	No	SP	N	Р	Р	NO	NO	POSITI VE
			ET-			ye	-				POSITI	-	POSITI
22	F	25	SAMPLE	no	YES	S	SP	Р	Р	Р	POSITI	NO	POSITI
23	M	75	PUS	no	YES	No	SP	P _	P	P	POSITI	NO	VE
24	М	27	PUS	no	YES	No ye	SP	Р	Р	Р	VE POSITI	NO	NO
25	M	40 DAY	SPUTUM BLOOD	no	YES	S	N	Р	Р	NO	VE	NO	NO POSITI
26	М	- 7	CULTURE	positive	YES	No	SP	N	Р	NO	NO	NO	VE POSITI
27	М	70	PUS	no	YES	No	SP	Р	Р	NO	NO	NO	VE
28	М	45	PUS	no	YES	No	SP	Р	NO	NO	NO	NO	NO
29	М	56	PUS	positive	YES	ye s	SP	Р	Р	NO	POSITI VE	NO	NO
30	М	70	ET- SAMPLE	no	YES	ye s	SP	Р	Р	Р	NO	NO	POSITI VE
31	М	DAY 6	BLOOD CULTURE	no	YES	No	SP	Р	Р	Р	POSITI VE	NO	POSITI VE
32	М	38	SPUTUM	no	YES	ye s	SP	Р	NO	NO	POSITI VE	NO	NO
33	М	29	ET- SAMPLE	no	YES	No	SP	N	NO	NO	NO	NO	POSITI VE
34	М	50	PUS	no	YES	ye s	SP	Р	NO	NO	NO	NO	POSITI VE
35	М	60	BLOOD CULTURE	no	YES	No	SP	Р	Р	NO	NO	NO	NO
36	М	55	SPUTUM	no	YES	ye s	SP	N	Р	NO	NO	NO	NO

	l	l				ye		l _	l	l	l <u>.</u>		l
37	М	75	PUS	no	YES	S	SP	Р	NO	NO	NO POSITI	NO	NO POSITI
38	М	55	URINE	positive	YES	No	N	N	Р	Р	VE	NO	VE
39	F	57	ET- SAMPLE	no	YES	No	SP	N	NO	Р	POSITI VE	NO	POSITI VE
40	F	48	ET- SAMPLE	no	YES	No	SP	N	NO	NO	NO	NO	NO
41	М	30	ET- SAMPLE	no	YES	ye s	SP	Р	NO	Р	NO	NO	POSITI VE
42	М	70	SPUTUM	no	YES	No	SP	Р	Р	Р	POSITI VE	NO	NO
						ye			P				
43	F	60	PUS	no	YES	s ye	SP	Р		NO	NO	NO	NO POSITI
44	M	70	URINE	no	YES	s ye	SP	P _	P	P	NO	NO	POSITI
45	М	72	SPUTUM	no	YES	s ye	SP	Р	Р	Р	NO	NO	VE
46	М	32	SPUTUM	no	YES	s ye	SP	Р	Р	NO	NO	NO	NO
47	М	10	PUS	no	YES	s	Р	Р	Р	NO	NO POSITI	NO	NO POSITI
48	F	65	PUS	no	YES	No	SP	Р	NO	Р	VE	NO	VE
49	М	67	BLOOD CULTURE	no	YES	ye s	SP	Р	NO	Р	POSITI VE	NO	NO
50	Ŧ	62	SPUTUM	no	YES	ye s	SP	Р	NO	Р	POSITI VE	NO	POSITI VE
51	М	77	PUS	no	YES	No	SP	Р	NO	Р	POSITI VE	NO	NO
31	IVI		ET-	110		ye							POSITI
52	М	38	SAMPLE ET-	no	YES	s ye	SP	Р	NO	Р	NO POSITI	NO	VE
53	М	65	SAMPLE	no	YES	S	SP	Р	NO	Р	VE	NO	NO
54	М	65	PUS	no	YES	No	SP	Р	NO	NO	NO	NO	POSITI VE
55	М	52	SPUTUM	no	YES	No	SP	Р	NO	Р	NO	NO	POSITI VE
56	F	64	PUS	no	YES	No	SP	Р	Р	NO	NO	NO	POSITI VE
57	М	67	SPUTUM	no	YES	No	N	Р	Р	Р	POSITI VE	NO	NO
58	М	64	PERITON EAL	no	YES	ye s	Р	N	Р	Р	POSITI VE	NO	NO
59	М	61	ET- SAMPLE	positive	YES	ye s	SP	N	Р	Р	POSITI VE	NO	NO
60	М	48	ET- SAMPLE	no	YES	No	SP	Р	Р	Р	POSITI VE	NO	POSITI VE
61	F	17	PUS	no	YES	ye s	Р	Р	Р	Р	POSITI VE	NO	POSITI VE
62	М	35	PUS	no	YES	No	Р	Р	Р	Р	POSITI VE	NO	POSITI VE
		78	PUS		YES	ye	P		P	P	POSITI	NO	NO
63	M			no		s ye		N _			POSITI		POSITI
64	М	76	SPUTUM PERITON	no	YES	S	SP	Р	Р	Р	VE	NO	VE
65	М	18	EAL FLUID	no	YES	No	Р	Р	Р	Р	NO	NO	POSITI VE
66	F	19	Mis - vaginal	no	YES	No	SP	P	P	Р	NO	NO	NO
67	M	75	SPUTUM	no	YES	No	SP	P	P	P	POSITI VE	NO	POSITI VE
			ET-			ye							
68	M	55	SAMPLE	no	YES	ye	SP	Р	Р	Р	NO POSITI	NO	NO
69	F	50	PUS	no	YES	ye	N	Р	Р	Р	POSITI	NO	NO
70	М	38	PUS ET-	no	YES	s ye	N	Р	Р	Р	VE	NO	NO POSITI
71	F	38	SAMPLE ET-	no	YES	s ye	SP	Р	Р	Р	NO	NO	VE
72	М	67	SAMPLE	no	YES	s	SP	Р	Р	Р	NO	NO	NO
73	F	day - 5	BLOOD CULTURE	no	YES	No	N	Р	Р	Р	POSITI VE	NO	POSITI VE
74	М	60	PUS	no	YES	No	N	Р	Р	NO	NO	NO	NO
75	М	22	Mis -Drain tip	no	YES	No	N	Р	Р	Р	POSITI VE	NO	NO
/5	IVI	22	ıιρ	TIU	IES	INO	I IN	1	F	F	VE	INO	INO

			ET-			ye					POSITI		POSITI
76	М	73	SAMPLE	no	YES	s ye	Р	Р	Р	Р	VE POSITI	NO	VE POSITI
77	F	47	PUS	no	YES	S	N	Р	Р	Р	VE	NO	VE
78	М	18	PUS	no	YES	ye s	N	Р	Р	NO	NO	NO	NO
79	М	40	PUS	positive	YES	No	N	Р	Р	Р	POSITI VE	NO	NO
80	F	61	Mis - Central IV line	no	YES	ye s	Р	Р	Р	Р	NO	NO	POSITI VE
81	М	60	pleural fluid	positive	YES	ye s	Р	Р	Р	Р	POSITI VE	NO	POSITI VE
82	F	32	PUS	no	YES	ye s	N	Р	Р	Р	POSITI VE	NO	POSITI VE
83	М	66	SPUTUM	no	YES	ye s	SP	Р	Р	Р	NO	NO	POSITI VE
84	F	30	ET- SAMPLE	no	YES	ye s	SP	Р	Р	Р	POSITI VE	NO	POSITI VE
85	F	23	URINE	no	YES	No	N	Р	Р	Р	NO	NO	NO
86	М	29	ET- SAMPLE	no	YES	ye s	SP	Р	Р	Р	POSITI VE	NO	POSITI VE
87	М	day - 1	BLOOD CULTURE	no	YES	No	N	Р	Р	Р	NO	NO	POSITI VE
88	F	58	PUS	no	YES	No	N	Р	Р	Р	NO	NO	POSITI VE
89	F	day - 16	BLOOD CULTURE	no	YES	No	N	Р	Р	Р	NO	NO	POSITI VE
90	М	45	ET- SAMPLE	no	YES	ye s	SP	Р	NO	Р	NO	NO	NO
91	М	50	SPUTUM	no	YES	ye s	N	Р	Р	Р	NO	NO	POSITI VE
92	F	50	PUS	no	YES	ye s	SP	Р	Р	Р	NO	NO	POSITI VE
93	М	34	PUS	no	YES	ye s	N	Р	NO	Р	NO	NO	NO
94	М	39	PUS	no	YES	No	N	Р	Р	Р	POSITI VE	NO	NO
			ET-							-	POSITI		
95 96	M	58 46	SAMPLE PUS	no	YES	No No	SP SP	P P	P	P	VE NO	NO NO	NO POSITI VE
97	M	19	PUS	no	YES	No	SP	P	P	P	NO	NO	POSITI VE
98	F	40	URINE	no	YES	No	N	Р	Р	Р	NO	NO	POSITI VE
99	F	42	ET- SAMPLE	no	YES	No	Р	Р	Р	Р	POSITI VE	NO	POSITI VE
10 0	М	60	SPUTUM	no	YES	ye s	Р	Р	Р	Р	POSITI VE	NO	NO
10	M	58	PUS	no	YES	ye s	N	P	P	P	POSITI VE	NO	NO
10	M	40	URINE		YES	No	SP	P	P	P	NO	NO	POSITI VE
10 3	M	65	PUS	no	YES	No	SP	Р	P	P	POSITI VE	NO	NO
10 4	M	48	ET- SAMPLE	no	YES	ye s	N	P	P	P	NO	NO	POSITI VE
10										P	POSITI		POSITI
10	M	30	PUS ET-	no	YES	No ye	N	Р	Р	-	POSITI	NO	POSITI
10	M	25	SAMPLE PERITON	no	YES	ye	SP	P	P	P	POSITI	NO	POSITI
10	М	40	EAL	no	YES	S	P	Р	Р	Р	VE	NO	POSITI
10	F	43	PUS ET-	no	YES	No ye	N	Р	Р	Р	NO POSITI	NO	POSITI
9	F	50	SAMPLE	no	YES	S	N	P _	P	P	POSITI	NO	VE
11	М	80	PUS	no	YES	No	N	Р	Р	Р	VE POSITI	NO	NO
1	М	72	PUS	no	YES	No	N	Р	Р	Р	VE	NO	NO
11 2	М	40	PERITON EAL	no	YES	No ye	N	Р	Р	Р	NO POSITI	NO	NO POSITI
11 3	F	61	PUS	no	YES	s	N	Р	Р	Р	VE	NO	VE
11 4	М	26	ET- SAMPLE	no	YES	No	N	Р	Р	Р	POSITI VE	NO	POSITI VE

11 5	М	60	SPUTUM	no	YES	No	N	P	P	Р	NO	NO	NO
11	М	75	SPUTUM	no	YES	ye s	Р	Р	Р	Р	NO	NO	NO
11 7	M	47	ET- SAMPLE	no	YES	No	N	P	P	P	POSITI VE	NO	POSITI VE
11	F		ET-					P	P	P			POSITI
11	F	18 45	PUS	no	YES	No No	SP SP	P	P	Р	NO NO	NO NO	VE NO
9	Г	40	Mis -	no	TES	INO	SF .	Г	F	F	INO	INO	INO
12 0	F	24	Central IV line	no	YES	No	Р	Р	NO	Р	NO	NO	POSITI VE
12 1	М	54	PUS	no	YES	No	SP	Р	Р	Р	NO	NO	NO
12 2	М	80	ET- SAMPLE	no	YES	No	SP	Р	NO	Р	POSITI VE	NO	POSITI VE
12	М	day - 5	BLOOD CULTURE	no	YES	No	Р	N	NO	Р	NO	NO	NO
12 4	М	day - 3	BLOOD CULTURE	no	YES	No	SP	Р	Р	Р	Р	NO	NO
12 5	М	64	ET- SAMPLE	no	YES	No	Р	Р	Р	Р	Р	NO	NO
12			BLOOD						-	-			
12	M F	1.5	CULTURE	no	YES	No	P P	P P	P	P P	P	NO	NO
12	г	41	PUS ET-	no	YES	No	Р	P	P	Р	Р	NO	NO
8	М	63	SAMPLE ET-	no	YES	No	N	Р	Р	Р	Р	NO	NO POSITI
12 9	М	62	SAMPLE	no	YES	No	N	Р	NO	NO	NO	NO	VE POSITI
13 0	М	27	SPUTUM	no	YES	No	N	Р	Р	Р	Р	NO	VE
13 1	М	79	ET- SAMPLE	no	YES	No	Р	Р	Р	Р	Р	NO	NO
13 2	М	40	ET- SAMPLE	no	YES	No	Р	Р	Р	Р	Р	NO	NO
13 3	F	22	ET- SAMPLE	no	YES	No	Р	Р	Р	Р	Р	NO	POSITI VE
13 4	М	55	ET- SAMPLE	no	YES	No	Р	Р	Р	Р	Р	NO	POSITI VE
13 5	F	17	URINE	no	YES	No	N	Р	Р	NO	NO	NO	NO
13 6	М	95	URINE	no	YES	ye s	Р	Р	Р	Р	Р	NO	NO
13 7	М	57	ET- SAMPLE	no	YES	No	Р	Р	Р	Р	Р	NO	POSITI VE
13 8	М	65	BLOOD CULTURE	no	YES	No	Р	Р	Р	Р	Р	NO	NO
13			ET-						-				
14	M	1.5	SAMPLE	no	YES	No	Р	Р	Р	NO	NO	NO	NO POSITI
14	F	year	URINE	no	YES	No	P	Р	Р	Р	NO	NO	VE
1 14	M	55	PUS	no	YES	No ye	N	P	P	P	P	NO	NO POSITI
14	М	65	PUS	no	YES	s ye	SP	Р	Р	Р	Р	NO	VE POSITI
3	F	25	URINE	no	YES	S	SP	Р	Р	Р	Р	NO	VE POSITI
14 4	F	17	PUS	no	YES	No	SP	Р	Р	Р	Р	NO	VE POSITI
14 5	М	42	SPUTUM	positive	YES	ye s	SP	Р	Р	Р	Р	NO	VE POSITI
14 6	М	65	SPUTUM	no	YES	No	Р	Р	Р	Р	Р	NO	VE
14 7	М	31	PUS	no	YES	No	N	Р	Р	Р	Р	NO	NO
14 8	F	48	ET- SAMPLE	no	YES	No	N	Р	Р	Р	Р	NO	POSITI VE
14 9	F	42	BLOOD CULTURE	no	YES	No	Р	Р	Р	Р	NO	NO	NO
15 0	F	14 day fema le	PUS	no	YES	No	Р	Р	Р	Р	Р	NO	POSITI VE
U		10	, 00	1110	1.20	140	'	<u> </u>	. '		ı '	110	v L

2) ANTIMICROBIAL PATTERN CHART:

AMC	СТХ	СХ	CTR	CAC	CAZ	СОТ	IMP	MRP	ETP	AK	GEN	тов	CIP	LE	DO	С	NX	NIT	COLISTIN
R	S	S	S	S	S	R	S	R	S	S	S	S	S	s	R	S			
R	R	S	R	S	R	R	S	R	R	s	R	R	R	R	R	R			
R	R	S	R	S	R	R	S	S	S	s	R	R	R	s	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			s
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			S
R	S	R	S	S	S	S	S	S	S	S	S	S	S	S	S	S			
R	R	R	R	R	R	R	S	S	S	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			S
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			S
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			S
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			S
R R	R S	R R	R			S													
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			s
R	R	R	R	R	R	R	s	R	R	R	R	R	R	R	R	R			s
R	R	R	R	R	R	s	R	R	R	R	R	R	R	R	R	s			s
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	S	s	S	S	S	S	S	S	s	S	S	S	S	R	S	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	S	S	S	S	S	S	R	S	S	S	S	S	S	R	S			
R	R	S	R	s	R	S	s	S	S	S	S	s	R	s	R	s			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	s	S	s	S	S	s	S	S	S	S	S	S	s	R	S	s			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	S	S	S	S	S	S	R	R	S	S	S	s	S	s	R	S			
R	S	S	S	S	S	S	S	S	S	S	S	S	S	R	S	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	S	R	S	R	S	R	R	R	R	S	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	S	R	R	R	R	S	S	S	S	R	R	R	S	R	R	R	R	
R	R	S	R	R	R	R	S	S	S	R	R	R	R	R	R	S			
R	R	R	R	R	R	S	R	R	R	R	R	R	R	R	R	R			S
R	R	R	R	R	R	R	S	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	S	R	R	R	S	S	S	S	S	S	R	S	S	S	S			

R	R	s	R	s	R	R	R	R	R	s	s	s	R	s	R	R	R	s		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	s		J		
R	R	s	R	R	R	R	s	s	s	s	s	s	R	R	s	s				
R	R	s	R	R	R	R	s	s	s	s	s	s	R	R	R	s				
R	R	R	R	R	R	R	s	s	s	s	s	s	s	s	S	s				
R	R	R	R	R	R	R	R	R	R	S	S	R	R	R	R	S	0	0		
R	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	0	0		0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	R	S	0	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
R	R	S	R	S	S	R	S	S	S	R	R	R	S	S	R	S	0	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R				
R	R	R	R	R	R	R	R	R	R	S	S	S	S	S	R	S	0	0		0
S	R	S	R	S	S	S	S	S	S	S	S	S	S	S	S	S				
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			S	
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R				
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
R	R	S	R	R	R	S	S	S	S	R	R	R	R	R	S	S	0	0		
R	R	S	R	R	R	S	S	S	S	R	R	R	R	R	R	S	0	0		
R	R	R	R	R	R	R	S	R	R	R	R	R	R	S	R	R	0	0		
R	R	R	R	R	R	R	S	S	S	S	R	R	R	R	S	S	0	0		
R	R	R	R	R	R	S	R	R	R	R	S	R	R	S	R	R	0	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R				
R	R	R	R	R	R	S	R	R	S	S	S	R	R	R	R	S	0	0		
R	R	R	R	R	R	R	R	s	R	S	s	s	R	S	R	R	0	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
R	R	R	R	R	R	S	S	R	S	S	s	s	R	R	s	S	0	0		
R	R	S	R	S	R	R	R	R	s	S	R	R	R	s	R	R	0	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	0	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	0	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S				
S	S	S	S	S	S	S	S	R	S	S	S	S	R	R	S	S	0	0		
S	S	S	S	S	S	s	S	S	s	s	s	S	R	R	R	s	0	0		
R	R	R	R	R	R	S	R	R	R	s	s	s	R	s	R	R				
S	S	s	S	S	S	S	s	S	s	s	s	s	s	s	s	s	0	0		0
R	R	S	R	S	R	S	S	S	S	R	R	R	R	R	S	s	0	0		0
R	R	S	R	S	R	R	R	R	R	R	R	R	R	R	S	s	0	0		0
R	R	R	R	R	R	R	S	R	R	R	R	R	R	R	R	S	0	0		0
R	R	R	s	R	R	R	S	S	S	S	s	S	R	R	R	R	R	R	<u> </u>	0
R	R	s	R	S	R	R	s	S	s	s	s	S	s	s	R	s	0	0		0
R	R	S	R	s	R	R	s	R	R	S	s	R	R	R	R	s				
R	s	s	s	s	s	s	s	s	s	s	s	s	s	s	R	s				
R	R	R	R	R	R	S	R	R	S	s	s	s	s	S	R	s	0	0		0

R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	0		
R	R	R	R	R	R	s	R	R	s	s	S	S	s	s	R	s	0	0	0
																	0	0	0
S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	0		
R	R	S	R	S	R	R	R	S	S	S	S	R	R	S	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
S	S	R	S	S	S	S	S	S	S	S	S	S	S	S	R	S	0	0	
R	S	S	S	S	S	R	S	S	S	S	S	S	S	S	S	S	0	0	0
S	S	S	S	S	S	S	S	S	S	R	R	S	S	S	S	S	S	S	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	s	R	R	S	R	R	R	S	S	R	S	0	0	0
S	S	S	S	S	S	S	S	s	S	S	S	s	S	S	S	S			
R	R	R	R	R	R	R	s	R	R	R	s	R	R	R	R	s	R	R	
R	R	s	R	s	R	R	S	s	s	S	s	s	R	R	R	R	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	s			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	s	s	R	R	R	s	0	0	0
s	s	S	s	s	S	s	s	s	S	s	s	s	s	s	s	s			
R	s	R	s	R	s	s	S	s	S	S	s	s	s	s	R	s	0	0	0
R	R	R	R	s	R	R	R	R	R	R	s	R	R	R	R	R	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	s			
R	R	s	R	s	R	R	s	s	s	R	R	R	R	R	s	s	0	0	0
		S		s												s	0	0	0
S	S		S		S	S	S	S	S	S	S	S	S	S	S				
R	R	S	R	S	R	R	S	S	S	R	R	R	S	S	S	S	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
S	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	S			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	0		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	0		
R	R	S	R	S	R	R	R	R	R	R	R	R	R	R	R	S	0	0	
R	R	R	R	R	R	S	S	S	S	S	S	S	S	S	R	S	0	0	0
S	S	R	S	S	S	S	S	S	S	S	S	s	R	S	S	S	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	s			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	s			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	s			
S	s	s	s	s	s	s	R	R	S	s	s	s	s	s	s	s	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	L		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	s	L		
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R																	_	_	
R	R	R	R	R	R	R	R	R	R	S	S	S	S	S	S	S	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	R	R	R	R	R	s	R	R	s	R	R	R	s	R	R	s	0	0	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R			
R	s	s	s	R	R	R	R	R	R	R	R	R	R	R	R	R	s	R	0
R	R	R	R	R	R	s	R	R	R	s	R	R	s	R	R	s	0	0	0
R	R	s	R	s	R	R	s	s	s	R	R	R	R	R	s	s	0	0	0
R	s	s	s	s	s	s	s	s	s	R	R	R	R	s	s	R	s	R	0
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	Ü	IX.	0
R	R	S	R	R	R	R	s	S	s	R	R	R	s	s	S	S	0	0	0
R	R	S	R	S	R	S	S	s	S	s	S	S	s	S	s	S	0	0	0
R	R	s	R	R	R	s	R	R	R	R	s	R	s	s	R	s	0	0	0
	R	R	R	R	R	R	R	R	R	R		R	R	R	R	R	U	0	U
R	R	R	R	R	R	R	R	R	R	R	R R	R	R	R	R	R			
R	R	R	R	R	R	R	R	R	R	R	S	R	R	R	R	S	0	0	0

