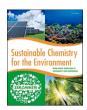

Bioremediation of plastics by the help of microbial tool: A way for control of plastic pollution



ELSEVIER

Contents lists available at ScienceDirect

Sustainable Chemistry for the Environment

journal homepage: www.editorialmanager.com/scenv

Bioremediation of plastics by the help of microbial tool: A way for control of plastic pollution

P. Lokesh ^a, R. Shobika ^a, SoghraNashath Omer ^a, Madhavi Reddy ^b, Panchamoorthy Saravanan ^c, R. Rajeshkannan ^d, V. Saravanan ^d, S. Venkatkumar ^{a,*,1}

- ^a School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
- ^b Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka,India
- E Department of Petrochemical Technology, UCE BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024, India
- ^d Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu 608002, India

ARTICLE INFO

Keywords: Bioremediation Environment Enzymes Microorganism Plastics

ABSTRACT

Plastics are a synthetic or semisynthetic material that is extensively used in our routine life because of its remarkable characteristics such as thermal, mechanical properties, durability, and stability, so they have widespread application. This massive use of plastics has caused various issues to human health and the environment. Nearly 700 species, including endangered species, have been affected by plastics. Enzyme - mediated and microbial degradation of plastic waste is a potential technique in which the process of biodeterioration, thermal decomposition, and integration actually took place and is ultimately transformed into gases and a microbial community, where the process leaves few residual effects. Recent studies have shown that bacteria and bacterial consortia, biofilm formation and fungi may biodegrade many polymers. Depending on the organisms, the molecular weight of the plastics, the kind of polymer, and the climate, waste plastic can be converted into methane, CO2, biomass, water and inorganic chemicals. Plastics induce oxidative stress, enhanced and inflammatory reactions, translocation or absorption, in people, animals and plants. Numerous studies have shown that people are susceptible to metabolic disorders, neurodegeneration, and malignancy. We have also talked about how we are working on using the metabolic processes of bacteria to minimize soil and water pollution by microplastics. More study is required to discover the crucial ecological characteristics and elements that affect plastic degradation in order to predict the fate of plastics in various contexts and to enable the development of solutions for minimising plastic waste.

1. Introduction

In the past few years, the essential for biodegradation of plastics has increased significantly due to the usage of disposable personal protective equipment to escape from life-threatening SARS Cov-2 virus. The Plastics are engineered polymers comprising of small monomer units amalgamated into an elongated chain by covalent bonds formed during polymerization. Plastics are chiefly synthetic polymers that are crafted by chains of carbon atoms along with oxygen, hydrogen, sulphur, nitrogen which are assembled around the carbon chains with high molecular mass [1]. The phrase 'plastic' originated from the Greek term 'plastikos' indicates to form [2]. Bakelite was the first plastic manufactured in commercial quantities, which was developed in the quick

1900 s. The shortage of supplies and necessity to augment technologies after the First World War propelled to the advance in innovative and upgraded artificial materials and plastics. The plastics present day establish a huge and diverse group of constituents that are formulated by the amalgamations of the synthetic and semi-synthetic polymer materials, they are also recurrently integrating the ingredients that sustain production and helps to achieve the desired end product, like flame retardants, antioxidants and plasticizers [3]. The plastics are the derivative from hydrocarbon deposits such as natural gas or oil, also they also may be churned out from the renewable resources such as biology based plastics derived as of from the sugar beet or the corn starch. Nothing of the normally used plastics is degradable they result in the accretion of plastics in landfills and disposal in the water, where they do

E-mail address: venkatkumars@vit.ac.in (S. Venkatkumar).

^{*} Corresponding author.

¹ ORCID ID: http://orcid.org/0000-0002-3021-6406

not decay in the atmosphere. Thus it threatens the diverse ecosystems. The plastic pollution in aquatic ecosystem is a global anxiety and situated everywhere through the ocean with attention around 580,000 fragments of plastic per square kilometre [4]. The production of plastic has augmented to grow subsequently in 1950 s, thru a prediction the virgin plastic of 8.3 billion metric tonnes are generated till date with a predictable yearly production rate of 2050 by 1100 tons. Even though there is enormous diversity of polymers the 95 % are only eight types of primary plastics, with polyethylene and polypropylene which comprises of 45 % of worldwide production [5].

By the start of mass consumption of plastics starting in 1960 s made a progression from the practice of old unprocessed materials to more multipurpose plastics, now plastics are an essential part of our day-to-day life [5]. The foremost 36 % of plastic is for packaging and as 16 % for routine usage in building and construction [6].

Over 0.3 billion tonnes of plastics are produced year around the world [7], of which 21 % are merely recycled or burned, with the remainder being released into the atmosphere as plastic garbage[8]. The mass construction and wide use of plastics and their by-products have led to a huge number of abandoned plastic creations in the ecosystem, they endure in heaping up because to their extensive strength and little recycling rate. The worldwide plastic of 9 % are only reprocessed, 12 % of plastics are incinerated that raises worldwide carbon dioxide pollution, and the 79 % of plastics are transferred to further natural atmospheres like oceans and landfills[9]. The Universal, scientists arose with the statistics that 8.3 billion tons of plastic had subsidised in 2017 by the manhood and they also said that the yearly plastic manufacturing are going to increase three-fold in the period 2050. In the recent worldwide efforts that pitched at fighting the extremely infectious SARS-Corona Virus 2, the atmosphere could have enhanced air, dip in the carbon mark, and good superficial water quality. Still, here has remained an extraordinary essential in the emancipation, and utilization of one time routine use plastic products starting from the pandemic of COVID - 19.

After the COVID-19 epidemic, estimations indicate that a significant amount of single-use plastic garbage has been created globally. The present universal estimation of regular usage of single-use Personal Protective Equipments such as 1.6 million tons of facemasks per day which indicates the face shields or facemasks of 3.4 billion are approximately once used and are disposed of daily because of SARS corona 2 pandemic. The Local approximations specify that Asia was with the maximum of 1.8 billons facemasks used daily, trailed by the other continents such as Caribbean, Africa, Latin America and the Europe, Oceania and North America, at the range from 445, 411, 380, 244, and 22 million used daily. China has a total population of 1.4 billion, which is followed by India with 1.3 billion, the US with 331 million, Brazil with 212 million, Nigeria with 206 million, and the UK with 67 million. if a face shield or facemask is used by all citizens by wearing and disposing of per day it might result least of 702, 386, 219, 140, 75, and 45 million infested masks in a day. Due to this, here is a rising risk of once-used plastic and Personal Protective Equipment. These are able to worsen the current plastic effluence hitches and might establish a future danger to marine organisms. The consumption of seafood, which is one of the world's best sources of protein, may expose people to tiny particle plastics, which not only pose harm to the environment but may also endanger their health. Additionally, micro, meso, and macroplastics in the atmosphere and aquatic environments may act as vectors for infections. The unintentional intake of latex gloves which might lead to serious hurts or even mortality of the animal [10]. Accretion of a bulky quantity of plastics in landfills or flaring of plastics emancipates greenhouse toxic gases like dioxins and furans, which plays a substantial role in ozone layer diminishing [11,12]. The growth of deliquescent groups on the exteriors of the polymer, which allows bacteria to adhere, is sparked by physical and chemical changes brought on by ultraviolet light [13–15]. Due to the global demand on plastics is growing the nonstop discharge into open environments is doubtful to decrease till 2030 [16]. Additionally, these plastic wastes might also trouble the food

web, boosted perniciousness with absorbing the adulterants, entangling animals, carrying and transferring dangerous pathogens and algae [17]. Plastics are indisputably higher constituents in conditions of prices, development also the useful properties. Human being day starts with the use of on a constant basis. To get rid of the problem the scientists have studied the biodegradation of plastics by the use of enzymes. Increased soil fertility, lower costs associated with waste management, and a decrease in. The environmental build-up of plastic garbage is merely one benefit of the helpful technology of biodegradation of plastics. [18]. The duty of microbes in the plastic deprivation in regular conditions are feebly understood. Several microbeshave been described as proficient in depolymerizing synthetic polymers in the research laboratory conditions [19]. Plastic waste experiences steady disintegration into micro plastics or nano plastics through the microbial decomposition, abrasion, mechanical, photolysis, and weathering, resulting in omnipresence of plastic bits in the atmosphere [20]. Nano plastics and micro plastics in marine ecology are joining the food chain and eventually end up in human guts [21]. There is rising to evince that several plastics can be decayed through the microbial community. Specific plastic-degrading microorganisms which include fungi and bacteria are discovered in several parts of ecosystem like marine [22], effluent treatment plants [23], landfills [24], compost pits [25], mangrove sediment [26] and guts of mealworms [27], some studies describes the microbiological community could reduce synthetic polymers and chiefly accountable for the bio dilapidation of plastics [24,27,28]. Contempt, around some investigators have been able to develop the engineered microorganisms [28,29] also extricate enzymes [29,30] for artificial polymer deprivation. While huge plastic left-over usually derives attention on debating leakage in the atmosphere, they are usual in tear and wear items, such as tyres, clothing, also ropes, cabins minor fragments throughout usage, enabling the inactive transport of tinier pliable wreckages into the ecosystem [31]. The microorganisms show the rapid act on thermosetting polymer like polyurethane, polyester, as well as some creatures were still isolated or otherwise inaccessible, requiring polyurethane as their sole supply of both nitrogen and carbon. Many investigations were accomplished to discover the method to bio degrade plastics naturally by means of hidden proficiency of microbes which can use plastics as the only carbon as the source of energy. Numerous microbes have discovered which can produce enzymes which can degrade of the plastics [32]. The Enzymatic dilapidation of polymers has been supposed of to serve this drive in the exposure of enzymes of microorganism which might put-on polymer in the ecosystem which is also faster and more effective method related to other ways [33]. The enzymes fit in the hydrolase family comprise of lipases, esterases, depolymerases, and poly(ethylene terephthalate) hydrolases which disrupt the carbon of several used plastics [34]. The enzymes are known as hydrolytic enzymes because they mostly operate in the presence of water. They deteriorate plastics into smaller monomeric units that can readily be released into the environment and are better used by bacteria as the carbon source that is then broken down into other compounds·H₂O, N₂, CO₂ CH₄ [35]. Many microbes are employed in bioplastic production and also employed in the breakdown of plastics. Even though production of the bio plastics is considered more costly than normal plastics but they have numerous advantages over normal plastics. Now the biopolymers are also used for the manufacturing and are mass-produced. The degradation of plastics takes to a greater extent of thousand years. The awareness to the peoples should be established about plastic pollution and its antagonistic consequences on the survivors of the world [36]. It is crucial to choose the right microbial strains, get familiar with suitable ex-situ and in-situ remediation techniques, monitor remediation sites continuously, and maintain the proper physicochemical and aeration circumstances. The hereditary and molecular investigation for recognizing genes accountable for plastic impoverishment enzymes and by the use of r DNA technology we can progress and speed up the remediation of discarded plastics. By instructing the learners on how to properly distinguish between compostable trash and non-biodegradable plastic before dumping

it, alerts were intended to be produced at the school level [37]. In order to lessen the effects of plastic and create a safe environment to live in, current advances in the bioremediation of plastics using microorganisms are being examined in this review.

2. Types and threat of plastics

According to their chemical makeup and characteristics, plastics can be divided into a number of categories[38,39]. Based on the thermal characteristics of plastic, they are further separated into thermosetting polymers and thermoplastics [38,40]. Thermoplastics: The thermoplastic polymers retain their chemical structure when heated, allowing them to withstand repeated beading. The many types of polymers used for diverse uses include polypropylene (PP), polyvinyl chloride (PVC). polyethene (PE), polystyrene (PS), and polytetrafluoroethylene (PTFE). They are also known as common plastics and range in molecular weight from 20,000 to 500,000 at. mass units (AMU), with a modest monomer unit serving as the starting point for their extraordinary repeating apparatus. [41,42]. Phenol-formaldehyde is one of the several forms of plastics known as thermoplastic polymers, polyurethanes, that stay solid upon heating subsequently they cannot be altered and softened. These plastics are not recyclable and the chemical change is irreversible since it has got a distinguishable pass-linked structure, in contrast to linear thermoplastics. Plastic Polymers are also categorised in a variety of ways depending on how they relate to the design and production process. The classification is done using special parameters such as durability, electrical conductivity, tensile strength, thermal stability, and degradability. The chemical characteristics of plastics are a key criterion for separating them into non-degradable and degradable polymers [39,41,42]. Plastics that are non-biodegradable and made of petrochemicals are also known as conventional polymer. Non-biodegradable plastic has very excessive molecular weight along with an unusual repeat of small monomeric units. On the other hand, other types of plastics are invented from starch and they do not possess high molecular weight. This type of plastic is called biodegradable. These are often accomplished by the interaction with ultraviolet (UV), water enzymes, and sluggish pH changes. Comparatively speaking to other biodegradable plastics, Bio Pool is an expensive biodegradable plastic that includes polyhydroxy butyrate and is also readily available on the market [43,44].

2.1. Hazards of plastics

The groundwater environment may be affected by harmful toxins released into the soil by chlorinated plastic. Methane gas is an extremely powerful greenhouse gas produced from the degradation system of plastic appreciably increases and causes international warming. In the case of oceanic environment, plastic impurities can kill marine mammals through ingestion of them via being incorrect for meals [45,46]. Investigations showed that diverse types of species, comprehensive of cetaceans, zooplankton, marine turtles, and seabirds can easily swallow plastic and garbage items such as bottle caps, lighters, and plastic bags. Sunlight and seawater make embrittlement of plastic which leads to the eventual breakdown of large items into smaller units eventually making it polyethylene, a silhouette of plastic as well as disposable bottles, shopping luggage, toys, and chewing gums, which is considered to carcinogenic. Phthalates which are present in inks, emulsions,toys and footwear among further merchandise, are having the potential for causing hormonal disturbances, most cancers, reduced sperm count and infertility, weakened immunity and developmental troubles [47]. Dilapidation of PVC and its process breaking down remains risky for human animals and surrounding environment. Numerous polybrominated blaze retardants are tenacious, toxic in nature, bioaccumulating The Stockholm Convention on Persistent Organic Pollutants also lists them (POPs) [42,58]. Amongst them, the most dangerous one is phthalate plasticizers i.e., di(2-Ethylhexyl) phthalate DEHP, Benzyl butyl phthalate (BBP) and DBP, which are considered as toxic and damage reproduction in living organisms. BBP is also same lethal to marine organisms with enduring consequences. In addition to these phthalates, the endocrine-disrupting potential of DEP (diethyl phthalate) and DCHP (di-cyclohexyl phthalate) is really estimated [48].

3. Biodegradation of plastics

Aauspicioustactic to depolymerize unused Petro-plastics into monomers is the dilapidation of plastics via enzymatic and/or microbial means where the process of recycling or mineralizing Plastic is created and transformed into water, carbon dioxide, and fresh biomass, along with the creation of higher-value bioproducts [49]. The process of biodegrading plastics involves the extracellular evacuation of enzymes by the microbe, the attachment of the enzyme to the plastic's exterior, the formation of tiny polymer intervenes through hydrolysis, and finally assimilation of the intervenes as a carbon source by microbial cells to produce carbon dioxide. Even though these polymers constitute artificial chemicals, numerous microorganisms have remained recognized in current years which are capable of metabolizing these polymers. Approximately over 90 microorganisms, together with fungi and bacteria, have been identified to decompose and reduce petroleum-based plastics frequently in vitro conditions [50].

Plastic biodegradation is a method where properties of plastics are changed by way of the molecular weight, shape, chemical structure, color, and tensile strength of pliable polymers finished microbial degradation. The process involves the enzymatic and non-enzymatic hydrolysis of microorganisms, mainly fungus and bacteria [51,52]. Biodegradation occurs in accordance with the polymer's origin, biological makeup, and environmentally suitable degrading circumstances. The mechanical properties of biodegradable materials are influenced by their chemical composition, manufacture, processing, storage, application conditions, and ageing. Plastics typically biodegrade aerobically in nature and landfills, anaerobically in compost and soil, and partially aerobically in sediments[53]. Microorganisms acquire energy through catalysing energy-producing chemical processes, which entail breaking chemical bonds and removing electrons from contaminants. This type of biological reaction is sometimes referred to as an oxidoreduction reaction, in which the organic pollutant is oxidised and, as a result, the molecule that receives the electrons is reduced. The pollutants are referred to as electron acceptors, which are the electron recipients, and electron donors [54]. The energy generated from these electron transmissions is used to create new cells together with a small amount of carbon from the pollution and some.

3.1. Aerobic biodegradation

Aerobic respiration, which is another name for aerobic biodegradation, is a crucial component of the environment's natural process of reducing pollutants at a number of toxic plastic disposal sites [42,54]. Aerobic respiration is the term used to describe the process by which organic compounds are broken down with the aid of oxygen. In aerobic biodegradation, microorganisms use O_2 to oxidise parts of the carbon in the pollutants to CO_2 , and then they throw off the remaining carbon to produce new cell mass. As a result of the reduction of O_2 , water is created. Therefore, carbon dioxide, water, and an increased population of bacteria are the main by-products of aerobic respiration [55].

3.2. Anaerobic biodegradation

Anaerobic biodegradation, which is a critical component of the natural reduction of pollutants at toxic waste sites, is the process of decomposing organic plastic pollution utilising microorganisms in the absence of oxygen [53]. Anaerobic respiration, a process that allows many microbes to exist in the absence of oxygen. Sulfate (SO_4^2) , nitrate (NO_3) , metallic elements like iron (Fe^{3+}) and manganese (Mn^{4+}) , or even carbon dioxide (CO_2) can replace oxygen in aerobic respiration by

absorbing electrons from contaminated contaminants in anaerobic breathing [59]. Inorganic substances are therefore used as electron acceptors during anaerobic respiration. The by-products of anaerobic respiration can also include new cell matter, reduced forms of alloys, methane (CH₄), hydrogen sulphide (H₂S), and nitrogen gas (N₂), depending on the electron acceptor. Oxidative dilapidation is the primary process for the deterioration of plastics, and this action reduces the material's molecular weight [56]. By means of internal and extracellular enzymes made by the bacteria, the polymer is transformed into monomer, dimer, and oligomer. The microbial cell, which can be used as an alternative energy source, becomes hooked on the by-products created during the conversion [57]. A bacteria has the ability to continually generate all the enzymes required for starvation as well as to activate enzyme synthesis as necessary for metabolism when the thermodynamic conditions are right or necessary [62]. According to Balasubramanian and coworkers, ecological elements (chemical and physical) are a major influence in the beginning of HDPE degradation and also aid microorganisms in reducing PE (HDPE) [59] (Fig. 1-3).

3.3. Mechanism of biodegradation

Since polymer molecules are not water-soluble and long, microorganisms are non able to administer the polymers via exterior cellular membranes hooked on the cells wherever furthermost of the biochemical procedures take residence. For the uptake of such substances, microorganisms developed a technique where they defecate extracellular enzymes which can depolymerize the polymers which are present exterior the cells. The mechanism of anaerobic and aerobic biodegradation is given in Figure. The following steps are required for the biodegradation of polymers to take place.

- 1. The microbe sticks to the polymer's surface.
- 2. Using the polymer as a carbon source, the bacterium grows.
- 3. The polymer will eventually deteriorate [40,52].

The microorganisms can cling to the exterior of the polymer as long as the latter is hydrophilic. The bacterium uses the carbon supply found in the polymer to develop and carry out other metabolic processes once it has attached itself to the polymer's surface. The organism's extracellular enzymes are released during the first stage of breakdown, eventually cleaving the main chain to produce low-molecular-weight spalls

such oligomers, monomers, or dimers. The bacteria also exploit these low-molecular-weight composites as sources of carbon and energy. Small oligomers may potentially infiltrate inside the microbe and be digested there [60,61].

3.4. Enzymes' function in biodegradation

Several limiting limitations plague the employment of microorganisms in biodegradation. Costly and time-consuming methods may be necessary for the production of bacterial cultures. Toxins, predator activity, and excessive levels of pollutants are a few of the variables that can cause microbial cells to become metabolically inactive or suffer harm. All microorganisms and thus every living cell include enzymes. Comparative quantities of the various enzymes generated by the various microorganisms vary between and even between strains of the same species. Because enzymes are actually particular in how they operate on substrates, they can help in the degradation of various pollutants[62]. With the aid of the laccase enzyme, the hydrocarbon that serves as the spine of PE is oxidised. Cell-free laccase incubated with PE utilising Gel permeation chromatography can be used to calculate the average percentage decrease in the molecular figure and molecular weight of PE by 15 % and 20 %, respectively (GPC) [63]. In order to accelerate the oxidation of aromatic compounds, laccase is a component of most lignin biodegrading fungus. On non-aromatic substrates, laccase activity has also been observed to operate [64]. Manganese-dependent peroxidases, lignin (MnP and LiP, respectively), and laccases are the three main enzymes of the ligninolytic system [65]. When proteases are responsible for the destruction of the PE, some bacteria, such as Bacillus spp. and Brevibacillus spp., are capable of doing the job [63]. Urease and Papain were discovered to be the two proteolytic enzymes that may break down and decrease PU medical polyester. By hydrolyzing urea bonds and urethane, hydroxyl groups and free amine are created, aiding papain's degradation of polymers [66]. With the assistance of manganese peroxidase and lignin-degrading fungi that are purified from the strain of Phanerochaetechrysosporium, high-molecular-weight PE may be degraded under carbon and nitrogen-limited conditions [57]. Microbial enzymes can effectively accelerate the biodegradation of plastics without having a negative impact on the environment.

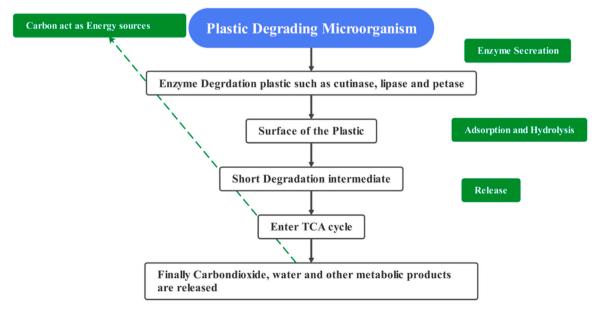


Fig. 1. Mechanism ofbiological degradation of plastics under aerobic conditions.

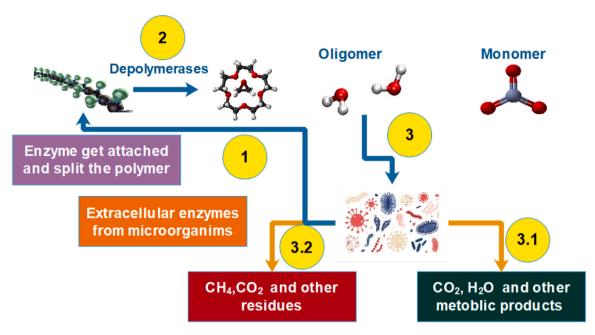


Fig. 2. General mechanism of microbial degradation of plastics.

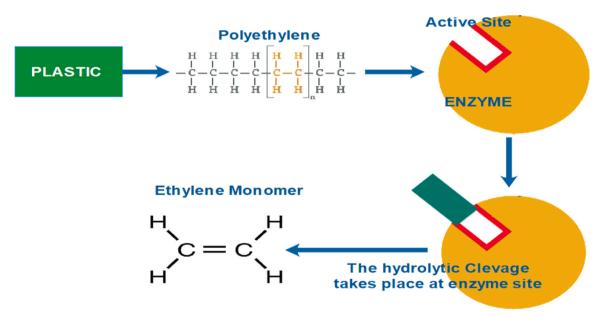


Fig. 3. Enzymatic degradation.

3.5. Mechanism of enzymatic degradation

Hydrolases are the primary enzymes responsible for the environment's deterioration of plastic materials [67]. The "Hydrolases" subclass of enzymes is thought to be the third subclass of enzymes. The breakage of the biochemical bond that holds water together resulted from the breakdown of bigger molecules into smaller ones. Similar to how hydrolase enzymes are tangled in the breakdown of polymeric polymer, they cleave the lengthy carbon chains in a two-step process. Hydrophobicity is a property shared by all polymers now used in the environment. The extracellular enzymes produced by various microorganisms adhere to the surface of the polymer in the initial step of the enzyme-polymer interaction via hydrophobic interactions. Hydrolases are made up of hydrophobic clefts around the active site of the enzyme that absorb the hydrophobic groups of the polymer, improving

the enzyme's accessibility to the polymer's exterior [68]. In the second stage of the reaction, the enzyme's active site is engaged in the hydrolytic cleavage of the long chain's polymer into smaller dimers or monomers that can be gathered by microorganisms and used as carbon sources. [69] (Table 1).

The above table depicts that there are several microbes involved in the degradation of several plastics. In research conducted by Auta and groups sum of eight bacteria were secluded from the mangrove dregs at Peninsular Malaysia to disintegrate microplastics. Only two of the eight isolates, Bacillus gottheilii and Bacillus cereus, were able to grow on a mineral medium that contained different microplastic polymers as the only carbon source, and weight loss percentages of the microplastic particles were discovered following a 40-day shake flask experiment B. gottheilii lost weight at a rate of 3.0 %, 6.2 %, 3.6 %, and 5.8 % for polyethylene terephthalate, polyethylene, polypropylene, and

 Table 1

 Recent advance in the biodegradation of plastics.

Гуре of plastic	Source of Microorganism	Microorganism	Enzyme	Time	Result OrDegrading efficiency	References
Microplastics from UV-treated	The sediment of mangrove sites of	Bacillus cereus	Cellular enzyme	40 days	1.6 %	[70]
polyethylene (PE) Microplasticsfrom UV-treated	North, south, west, and east of Peninsular Malaysia				6.6 %,	
polyethylene terephthalate (PET) Microplastics from UV-treated	1 chinistica Malaysia				7.4 %	
polystyrene (PS)		Basillus asuksili				
Microplastics from UV-treated Polyethylene (PE)		Bacillus gottheili			6.2 %	
Microplastics from UV-treated polyethylene terephthalate (PET) Microplastics from UV-treated					3.0 %	
polypropylene (PP) Microplastics from UV-treated					5.8 %	
microplastics polystyrene (PS).	Plastic dump yord in	Pacillus enecias	Linese and estarese	20 dovo		[71]
Brominated (High Impact Polystyrene) HIPS emulsion	Plastic dump yard in Thiruvananthapuram	Bacillus species	Lipase and esterase	30 days	94 %	[71]
HIPS film Brominated High Impact Polystyrene		Pseudomonas species	Esterase		23.7 % 97 %	
HIPS emulsion HIPS film					13.7 %	
High Impact Polystyrene (HIPS), e- plastic with antimony trioxideanddecabromodiphenyl	The soil samples taken from the dumpyard of plastics	Citrobacter sedlakii, Enterobacter sp., Brevundimonasdiminuta.	Extracellular depolymerase enzyme	30 days	12.4 %	[72]
oxide Polystyrene chips	Water samples from Dadri wetland,	andAlcaligenes sp. Exiguobacterium sp. DR11	hydrolyzing	30 days	8 %	[73]
Polythene	Uttar Pradesh, India Soil samples taken from the garbage	Exiguobacterium sp. DR14 PB-13	enzymes Laccase	60 days	8.8 % 19 %	[74]
•	dumped yard of perungudi and chrompet, Chennai, Tamil nadu,	PB-12		j	13 %	
Bioplastic PBSA (Polybutylene	India. Soil sample collected from locality	Sclerotinia sp. B11IV	_	30 days	49.68 %	[75]
succinate-co-butylene adipate)	of Arctowski Polish Antarctic Station (62090 3700 S 58280	Fusarium sp. B30 M strains Geomyces sp. B10I			45.99 % 25.67 %	
Polycaprolactone bioplastics	2400 W) in King George Island and	Sclerotinia sp. B11IV			33.7 %	
	the South Shetland Islands in	Fusarium sp. B30 M			49.65 %	
Polyester vylon-200	Antarctica. Acquired from the Punjab	Geomyces sp. B10I Penicillium fellutanum	Lipase	7days	5.71 % 49.65 %	[76]
rolyester vyloli-200	University's Fungal bank, Lahore, Pakistan.	renculum jeudumum	ыразе	7 days	49.03 %	[/0]
Low-density polyethylene film	Yazd city with any early temperature range of 0.8–39.5	Streptomyces gancidicus IR- SGS-K2 (MH819728.1)	-	60 days	$2.31\pm0.1~\%$	[77]
	°Celius (Location: 31°55′5.26" N, 54°23'34.83" E) hot desert climate,	Streptomyces sp. IR-SGS-K3 (MK608706.1)			$3.56\pm0.3~\%$	
	Moist forest region (36°29′24.71" N, 51°8′33.48" E).	Streptomyces sp. IR-SGS-Y1 (MK719896.1			$6.69\pm0.16~\%$	
	Kelardashtforestry with range of temperature 4–30 °C	Streptomyces sp. IR-SGS-Y2 (MK719898.1)			$2.46\pm0.3~\%$	
	, semi-arid (35°30′25.5" N, 51°22'06.0" E), Tehran city with	Streptomyces sp. IR-SGS-Y3 (MK719897.1)			$3.64\pm0.45\%$	
	1.2– 36.8 °C.	Streptomyces sp. IR-SGS-T1 (MK608775.1)			$4.2\pm0.08~\%$	
		Streptomyces sp. IR-SGS-T2 (MK608841.1)			$3.98\pm0.37~\%$	
		Streptomyces alborgiseolus IR- SGS-T10			$9.5\pm0.3~\%$	
		(MK719894.1) Streptomyces sp. IR-SGS-T4 (MK611551.1)			$6.48\pm0.75\%$	
		Streptomyces sp. IR-SGS-T5 (MK611552.1)			$5.31\pm0.46\%$	
		Nocardia farcinica IR-SGS-T8 (MK719892.1)			3.6 \pm 0.1 %	
		Nocardia sp. IR-SGS-T9 (MK719893.1)			$3.98\pm0.05\%$	
		Nocardia sp. IR-SGS-T3 (MK611456.1)			$5.98\pm0.72\%$	
		Rhodococcusruber IR-SGS-T6 (MK611559.1)			$6.23\pm0.5~\%$	
		Rhodococcusruber IR-SGS-T7			$3.01\pm0.12\%$	
		(MK611560.1)				

(continued on next page)

Table 1 (continued)

Type of plastic	Source of Microorganism	Microorganism	Enzyme	Time	Result OrDegrading efficiency	References
		Bacterial mixture			$3.69 \pm 0.39 \%$	
Low-Density Polyethylene	Sewage sludge was mixed with garden soil	Aspergillus nomius Streptomyces sp	-	90days	4.9 % 5.2 %	[78]
polyethylene	surface water of Yaounde (Cameroon, Central Africa)	Pseudomonas aeruginosa		30 days	6.25 %	[79]
Phthalate ester	Baijiu fermentation starter	GRAS Bacillus subtilis	18 enzymes corresponds to α/β hydrolase family	30days	212.4 mg/ (Lperh)	[80]
Low-Density Polyethylene	Insecticide free, soil and water samples	B. cereus P. putida		30 days	38.88 % 26.11 %	[81]
High-Density Polyethylene	Dumpsite soil taken from ancient historic Daulat gateway of Northern by-pass, Shujabad road. and Sher-	Alcaligenes faecalis Bacillus sp. Bacillus sp.		40 days	5.8 % 11.7 % 3.8 %	[82]
Low-Density Polyethylene	shah road.	Streptococcus spp. Alcaligenes faecalis Bacillus cereus Bacillus sp. Bacillus sp.			13.7 % 3.5 % 15 % 11.8 % 4.8 %	
Polyester		Streptococcus spp. Alcaligenes faecalis Bacillus sp. Bacillus sp.			9.8 %. 17.3 % 9.4 % 5.8 %	
Bisphenol-A polycarbonate plastic	The stimulated effluent sample taken from the ventilation period of the municipal sewer water treatment plant in Suzhou, China.	Pseudoxanthomonas sp. strain NyZ600	hydrolyzing enzymes	30 days	2.5 %	[83]
Photo degraded films Low-Density Polyethylene - iron	B. subtilis e secluded from LDPE samples in farming soils at Murcia, in Spain.	Brevibacillus Borstelensis Bacillus mixture(Bacillus	-	90 days	9.0 % 11.5 %	[84]
Dhotodogradad films Lovy Donsity	mixture of the three identified bacterial strains and <i>B. borstelensis</i> (DSM-No 6347) was got from the German collection of	megaterium Bacillus subtilis and Bacillus cereus,) Brevibacillusborstelensis Bacillus MIX (Bacillus subtilis			43.6 % 47.6 %	
Photodegraded films Low-Density Polyethylene -Cobalt	microorganisms and cell cultures (DSMZ GmbH, Braunschweig, Germany	Bacillus cereus, and Bacillus megaterium) Brevibacillusborstelensis			15.7 %	
Photodegraded films Low-Density Polyethylene - Manganese	Germany	Bacillus MIX (Bacillus subtilis Bacillus cereus, and Bacillus megaterium)			41.1 %	
Biodegradation of them degraded films Low-Density Polyethylene -Cobalt		Brevibacillusborstelensis Bacillus MIX (Bacillus subtilis Bacillus cereus, and Bacillus megaterium)			59.2 % 51.2 %	
Biodegradation of thermo regulated films Low-Density Polyethylene -Manganese		Brevibacillusborstelensis Bacillus MIX (Bacillus subtilis Bacillus cereus, and Bacillus megaterium)			35.4 % 41.5 %	
		PAB1 Bacillus subtilis,			32 %	
low-density polyethylene Polyethylene bags (40 μm)	Soil samples are gathered from four distinctive plastic unloading	PBB1 Pseudomonas fluorescenS		One month	37 %	[85]
	destinations in Chennai (Pallikaranai, Perungudi,	PBB3 Pseudomonas putida	alkane monoxygenase		40 %	
	Medavakkam, and Sirucheri).	PCCB2 Streptococcus mutans		00.1	17 %	50.63
PCL aliphatic plastics poly (ε-caprolactone) and	-	Amycolatopsismediterannei	extracellular lipase (Cutinase)	22 hr	90 %	[86]
PBSc-D poly(1,4-butylene succinate) extended with 1,6- diisocyanatohexane	-				80 %	
Polyethylene (Aged treatment)	Organism secluded from Antarctic soil situated on Greenwich- Antarctica Island (South Shetland	Mortierellasp Penicillium sp. Geomicessp	-	90 days	$\begin{array}{c} 3.3 \pm 0.2 \; \% \\ 3.6 \pm 1.4 \; \% \\ 6.8 \pm 0.6 \; \% \end{array}$	[87]
Polystyrene (Aged treatment)	Islands, Antarctic Peninsula, 62° 26' 57" S, 9° 44' 27" W).	Mortierellasp Penicillium sp. Geomicessp			$\begin{array}{c} 2.2 \pm 1.4 \ \% \\ 8.4 \pm 1.6 \ \% \\ 24.9 \pm 7.5 \ \% \end{array}$	
Polyurethane (Aged treatment)		Mortierellasp Penicillium sp. Geomicessp			$26.3 \pm 9.8 \ \% \\ 28.4 \pm 5.8 \ \% \\ 1.5 \pm 0.8 \ \%$	
Polyethylene (Un aged treatment)		Mortierellasp Penicillium sp. Geomices sp.			$\begin{array}{c} 0.0 \pm 0.0 \ \% \\ 1.3 \pm 0.3 \ \% \\ 2.1 \pm 0.6 \ \% \end{array}$	

Table 1 (continued)

Type of plastic	Source of Microorganism	Microorganism	Enzyme	Time	Result OrDegrading efficiency	References
Polystyrene (Unaged treatment)		Mortierellasp Penicillium sp. Geomicessp			$0.0 \pm 0.0 \%$ $0.0 \pm 0.0 \%$ $16.4 \pm 1.9 \%$	
Polyurethane (Unaged treatment)		Mortierellasp Penicillium sp.			$11.3 \pm 5.7 \ \% \\ 18.0 \pm 10.7 \ \%$	
polystyrene	Depth sediments of the Arabian Sea	Bacillus paralicheniformis G1 staphylococcus cohnii ssp. Urealyticu	Oxygenases (monooxygenase and dioxygenase)	60 days	34 % 5.57 %	[88]
Low-Density Polythene	Garden Soil Lokhandwala, Forest Versova, Dumping Ground DN Nagar, Mangrove Soil Lokhandwala	Bacillus Subtillis/ Amyloaquefaciens/ Vallismortis Aspergillus Niger	extracellular enzymes	30 days	9.8 % 12.13 %	[89]
	Nagai, Mangrove Son Lokilanuwaia	Cutibacterium Sp.			74 %	
Polyhydroxy butyrate	Soil sample taken from the seashores in Korea, with Incheon, Busan,Mallipo Pohang, and Jejuls land	P. geniculata WS3 with manure extract		10 days	almost 100 %	[90]
Polylactic acid	The fungus secluded from the exterior of old polyethylene carry bags taken from trash	Penicillium Fusarium sp.simplicissimum	Lipase	150 days	$60.1 \pm 3.56 \%$	[91]
Low-Density Polyethylene Pre-treated with alcohol	0-	44			$\begin{array}{c} 25.58 \pm 2.72 \\ \% \end{array}$	
Low-Density Polyethylene Pre-treated without alcohol		Penicillium simplicissimum Fusarium sp.	Lipase		$58.0 \pm 4.04 \% \\ 24.78 \pm 3.94 \\ \%$	
Low-Density Polyethylene	The two Bacillus strains included and identified formerly at the Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar by conventional and molecular techniques	Bacillus amyloliquefaciens Ralstonia sp. strain SKM2	Ī	30days	18 % 39.2 %	[92]
Low-Density Polyethylene	-	Bacillus sp. strain SM1 B. carboniphilus	-	180 days	18.9 % 34.55 %	[93]
Low-Density Polyethylene	LDPE bags taken from Teku Dumping spot and Landfill location.	B. sporothermodurans B. coagulans B. neidei	-	2 months	36.54 % 18.37 %	[94]
		B. smithii B. megaterium			36.07 % 16.40 % 34.48 %	
Low-density polyethylene matrix	-	novel sp. Bacillus tropicus (MK318648)	-	40days	10.15 %	[95]
High-density polyethylene	Plastic waste dumpsites of Gulf of Mannar.	Arthrobacter sp. Pseudomonas sp	Oxido reductase	30days	12 % 15 %	[96]

polyethylene, respectively. B. cereus was able to bioremediate 6.6 %, 1.6 %, and 7.4 % of polyethylene terephthalate, polyethylene, and polystyrene. Due to the cellular enzymes present in them, they led to the development of fresh functional groups, drop in the absorption of characteristic peaks of microplastics was detected by FTIR, and consequent structural transformations detected in SEM photographs which denotes the plastics degradation [70]. In an investigation accomplished by Mohan and team they isolated Pseudomonas and Bacillus strains from a plastic dump yard in Thiruvananthapuram and degraded the brominated High Impact Polystyrene. The culture growths with e-plastic as the only carbon source were supported with Triphenyl Tetrazolium Chloride. On the four days of growth in brominated High Impact Polystyrene emulsion with Bacillus sp. showed 94 % and 97 % with Pseudomonas sp. Nuclear magnetic resonance spectra were used to establish deprivation, and the disintegrated film revealed the production of an aliphatic carbon chain associated with bromine. The external alterations in the brominated HIPS film were seen by SEM, and the FTIR analysis showed a decrease in C-H, C=N, and C=O groups. Bacillus sp. and Pseudomonas sp. as showed 23.7 % (w/w) and 13.7 % (w/w) weight reduction, respectively, after 30 days of interaction with HIPS film.71].

The research that was done by Vini C Sekhar and coworkers isolated and identified totally four non-pathogenic e-plastic in taking bacterial strains from soil taken from the plastic dumped yard. The medium of high impact polystyrene (HIPS) as the only carbon source coupled with

antimony trioxide and decabromodiphenyloxide was employed in the enumeration of the microbial cultures. By 16 S rRNA sequencing the organisms were confirmed to be Alcaligenes sp, Brevundimonasdiminuta, Citrobacter sedlakii, and Enterobacter sp. The biodegradation experimentations was performed in the flask with gelatin supplement at 0.1 % w/v and high impact polystyrene which had improved the deprivation rate to an extreme of 12.4 % in a period of 30 days. It was discovered that there is a decrease in the absorption of trait peaks of plastic films when comparing actual and deteriorated e-plastic films, which was observed by TGA, FTIR, and NMR analyses. With the aid of HPLC and a scanning electron microscope, the polystyrene degradation in the culture supernatant was detected. For the enzymatic degradation of the eplastic, all cultures displayed depolymerization[72]. In research by Deepika Chauhana and team on the seclusion of both Exiguo bacterium sp and Exiguobacterium sp. DR14 from the water samples of Dadri wetland in Uttar Pradesh, India. They established that the DR11 may co-colonize polystyrene planes and generate workable biofilms after continuous incubation for 30 days. Subsequently, on evaluation using AFM analysis, the depths and indentations made on the polystyrene surface that are specific to the hydrolysing enzymes secreted by the microbial cell may start the depolymerisation process. In contrast to microbial untreated polystyrene, processed samples displayed improved ruggedness. The water contact angle dimension of polystyrene samples gestated with Exiguobacterium established hydrophobicity in

distinct control. The analysis done by FT-IR fortified the breakup of the protruding carbonyl crests in contrast to unprocessed controls displayed collapse by the oxidation process in polymer chains[73]. In research conducted by Abirami and team isolated the organisms from the soil samples collected from the waste dumping yard of Chrompet and Peru Exiguobacterium-generated polystyrene samples' water contact angle measurements established their distinct control's hydrophobicity. FT-IR measurement strengthened the breakdown of the projecting carbonyl crests in comparison to unprocessed controls, which showed polymer chain oxidation collapse[73]. In their study, Abirami and team identified the organisms from soil samples taken from garbage disposal sites in Chennai, Tamil Nadu, India's Chrompet and Perungudi. In the laccase plate test, the bacterial growth developed a brown colour zone around it, indicating the production of laccase enzyme on PB-13 and PB-12, and in the test for plastic breakdown, burial in soil pits combined with enhanced culture, the creation of the enzyme was observed. Estimations and reports are made regarding the plastic's weight decrease. In Laccase plate examination there was the development of the brown color zone, around the bacterial growth which indicates the manufacture of laccase enzyme on PB-13 and PB-12 and in plastic degradation test, by burial in soil pits coupled with enriched culture. The weight loss of the plastic is estimated and reported [74]. Research conducted by Urbanek and co-workers isolated the fungi from the soil sample of Fusarium, Geomyces, Sclerotiniaand Mortierella, from area of Arctowski Polish Antarctic Station (62,090 3700S 58,280 2400W) King George Island and the South Shetland Islands of Antarctica. The Fusarium sp.andSclerotiniasp strainoptimum temperature for the best bio deprivation process was found to be as 20 °C, biodegradation rate reached to 49.68 % in Polybutylene succinate-co-butylene adipate, 33.7 % (Polycaprolactone bioplastics) for Sclerotiniasp and for Fusarium spas 45.99 % (Polybutylene succinate-co-butylene adipate), 49.65 % (Polycaprolactone bioplastics). The biodeprivation rate was significantly lower in 20 $^{\circ}$ C (11.34 $^{\circ}$ 6 for Polybutylene succinate-co-butylene adipate, and 4.46 % for Polycaprolactone bioplastics, while the maximum biodegerivation rate was observed at 14 °C(25.67 % for Polybutylene succinate-co-butylene adipate) and 5.71 % for Polycaprolactone bioplastics) for Geomycessp the results showed that Geomycesrevealed superior biodegradation at minor temperatures. The SEM was used to demonstrate the external morphology of the bioplastic and the addition of fungal hyphae to the exterior recovered films made from polybutylene succinate-co-butylene adipate and polycaprolactone. Several pits and cracks are visible when viewed with an Auriga 60 Zeiss scanning electron microscope, which is indicative of fungus acting. The film remnants, which were removed from culture plates and visualised at a magnification of 5000, revealed a connected fungus hyphae with a bioplastic outer region. In few ways, it remained not probable to detect the make-up of the film due to the overgrowth on the film surface. In film wreckages the cultures in shake-flask, growed on the exterior of bioplastic remained not plenteous as present in he culture plate. A hyphae binding on the exterior was observable. Though, static, it was to detect deviations in bioplastic films in disparity with control samples, which primarily remained exposed through grooves and holes in the structure this research disclosed that microbesin Antarctic provinces are good in plastic deprivation at very low temperatures [75]. In research conducted by Amin and team production of lipase by P. Fellutanumstood 2.05-fold enhanced through surface mechanism later 24 h at the pH of 5.0 growth in existence of 0.1 % level of lactose as a sole carbon source at 35 °C and the Weight loss above 81 % of Polyester vylon -200 through lipase-mediated treatment specifies that this fungal lipase could be a virtuous origin to reduce polyesters, which could help in overcoming the complications of solid waste. The SEM, DSC and FT-IR studies proved the biocatalytic deprivation of PV-200 here in the work they set forth the feasibility of a numerical tactic to make best media preparation for producing lipase for biocatalytic degradation of polyesters [76]. In a study by Soleimani and team seventeen polyethylene-degrading bacteria were counted from soil samples in Iran

where unique enriched media with polyethylene as a carbon source and were identified by 16 S rDNA gene decoding. The microorganisms were proficient of impoverishment polyethylene with a constrained incubation period deprived of the essential for physicochemical pre-treatments which included generally Actinobacteriainclude the three genera of Rhodococcus, Streptomyces, and Nocardia. The enumetated microbes fitted toward seventeen diverse classes of gram-positive Actinobacteria. Altogether, total 11 species with Streptomyces genus, three species in Rhodococcus genus, and in Nocardia3 species were recognized. The microorganisms lower than 99 % 16 S rRNA gene similarities with identified species are so-called as novel species. Regarding the evaluation of the SEM, weight loss, tensile strength, and FTIR tests for polyethylene biodegradation during a 60-day time frame of incubation the biodegradation of polyethylene illuminates Actinobacteria has the highest capability for biodegradating polyethylene-based plastics. Streptomyces sp. exhibited the maximum decrease in weight of Low-density polyethylene film as 1.58 mg/g/day followed by Nocardia sp. Streptomyces sp. and Rhodococcus sp.showed the weight loss of nearby 1 mg/g/day lacking any pre-treatments. Rhodococcus sp. showed the finest drop in the tensile stuff of Low-density polyethylene film, whereas outcomes from FTIR analysis for *Streptomyces sp.* showed a substantial transformation in structural investigation. Surprisingly, the bacterial mixture showed slight weight loss. [77]. The biodegradation of low-density polyethylene was achieved in the study by Abraham and co-workers by engaging actinobacteria and fungus enumerated from waste dumping site. Amid total enumerates, two potent strains were found by the enhancement technique. On 16 S rRNA and 18 S rRNA sequencing secluded strains was examined for weight loss Streptomyces sp. exhibited weight loss of 5.2 % and Aspergillus nomiusof4.9 % in Low-density polyethylene film. The mass loss of Low-density polyethylene film showed it was proficient of utilizing polyethylene as a sole carbon source. The carbon dioxide progression was examined later dilapidation of polyethylene fragments, the amount of carbon dioxide got to 2.85 gL⁻¹in the existence of Streptomyces sp. and Aspergillus nomius yielded 4.27 gL⁻¹. The FTIR band of low-density polyethylene film demonstrated deviations in the existence of chemical groups such alcohol, phenols, amine, and alkanes after dilapidation. GCMS was used to confirm the additional elements of low-density polyethylene film that broke down after coming into contact with the isolates. Low-density polyethylene film The Low-density polyether sample revealed the most significant structural changes to the band after 90 days of starvation. The most obvious structural changes in the band were visible in the Low-density polyether sample. The findings supported the fact that enumerates were skilled at effectively removing low-density polyethylene films [78]. In research conducted by Edith B. MouafoTamnou and groups the aquatic microorganisms are assessed with the impression of temperature in an acidic atmosphere for polyethylene deprivation by Pseudomonas aeruginosa, the electric conduction of the air and progressive plenty subtleties of cell concerned. The disinfected fragments of polyethylene which is of 0.08 g were engrossed as in the mineral sterilized solution at 5 pH of in flasks made of glass with cells of *P. aeruginosa* at concentrations altered to 186.103 CFU/100 µL. The entire setup was kept at temperatures of 7, 23, 37, and 44 °C for 10, 20, and 30 days. After development, the outcomes presented that electric conduction which remained $3386\,\mu\text{S/cm}$ at the early moment amplified by upsurge in the gestation period. The highest value, 5476 S/cm, was recorded at 44 °C and then 30 days later. The pH solutions were lowered. The lowest temperature was 7 °C, while the values after 10 and 20 days were 4.11 and 4.12. The rate of deprivation of polyethylene fragments was wide-ranging, ranging from 8.10 to 5 grammes for 10 days at 7 $^{\circ}$ C and from 2.10 m to 4 grammes in 10 days at 44 °C at 23 °C. After 30 days at 44 °C, it was discovered that polyethylene lost the most weight, at a maximum of 6.25 %. The deceptive altering charges in cell profusion wide-ranging through differences in incubating temperature. It was encouraging under 23 °C and 7 °C shimmering comparative cell augmentation, and negative underneath 37 °C and 44 °C shimmering comparative hindrance of cell. Maximum

relative ostensible cell development percentage put up at 1.831 CFU in 10 days documented at 23 °C also the extreme comparative cell embarrassment proportion was 7.831 CFU for 10days documented at 44 °C. Electrical conductivity, pH, and the mass of the spalls in solutions all differ significantly (P 0.05) after a single maturation temperature change from one maturation period to another. Cell abundance differences from one incubation temperature to another at P 0.05. The properties of acid pH of the atmosphere, recognized to sluggish dejected the bio-deprivation of polyethylene polymer by this bacteria appear to remain offset by little temperatures in the atmosphere wherever the dilapidation of this polymer by the bacteria primes towards the situation progress in the medium. Though, at temperatures predictably ideal for its growing frequency, its increase appears to be slackened down, perhaps as a consequence of the biochemical configuration of the medium which had become metabolically fewer promising [79]. In research conducted by Youqiang Xu and team A strain of GRAS Bacillus subtilis that efficiently tarnished phthalate esters was identified from the Baijiu zymolysis starter. After the initial total of 10 milligrammes for every 10 millilitre reaction combination by using wild-type strains, the half-lives of di-(2-Ethylhexyl) phthalate, di-isobutyl phthalate, and di-butyl phthalate were 25.49, 3.93, and 4.28 h, respectively. The entire metabolic pathway and genome sequencing were developed through the research of metabolic mediators. It was found that the hydrolase group of XVIII enzymes existed. The phthalate ester was hydrolysed by the enzymes GTW28 09400, GTW28 13,725, and GTW28 17,760, but not by the enzyme GTW28 17,760, which was tasked with performing sole ester bond hydrolysis. By molecular docking, they found, way to upsetting enzymatic ester bond hydrolysis of mono-butyl phthalate for GTW28_17760. Carboxyl group which was produced through the initial hydrolysis stage associated with histidine popular the catalytic dynamic center retards the exaggerated enzymatic hydrolysis [80]. In a study by Shahida Ibrahim and groups the deprivation of polyethylene by endosymbionts revealed a significant decrease on the mass of polyethylene sheets after 15, 30, and 45 days of experiment on evaluation of residual weight of polyethylene (LDPE) after 45 days of maturity, with the highest percent depreciation in residual weight seen in B. cereus as 38.88 % and the lowest discovered on P. putida as 26.11 %. The Scanning Electron Microscopy pictures displayed localized dilapidation of the polyethylene round the bacterial cells in the biofilm and the ductile strength or percentage extension had abridgedlater 45 days of incubation amongst microbes, P. putida and B. cereus was observed to be the utmost efficient. [81]. In research conducted by Aatikah Tareen et al., microbes from dumped site remained used. From the screening, five straining remained selected for subordinate screening, which was observed by bacterial community SEM, bacterial community and mass loss deprivation was performed. Among that Alcaligenes faecalis (MK517568) degraded Low -Density Polyethylene by 3.5 %, High-Density Polyethylene through 5.8 %, and Polyester as 17.3 %. Bacillus cereus well tolerated at 30C and reduce polyester by 29 %. Through Scanning Electron Microscopy the holes, piths, and groves was seen on the external which specifies the cleavage in the carbonylic group too proposes plastic dilapidation. On adding to altogether these evaluates, enumerated strains proficiently reduce microplastics and beads of several classes of polymers [82]. In research conducted by Yue and co-workers Pseudoxanthomonas sp. strain NyZ600 were able to reduce Bisphenol-A polycarbonate which was enumerated using activated sludge via employing diphenyl carbonate by means of a stand-in substratum. On incubating the stain for 30 days 2.5 % of Bisphenol-A polycarbonate films was degraded. Then Bisphenol-A polycarbonate films was investigated with Fourier transform infrared spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy atomic force microscopy, water contact angle, thermo gravimetric analysis technique, and, differential scan calorimeter characterization of the treatment polycarbonate Bisphenol-A film recommended that carbonate carbonyl groups declined. And hydroxyl sets amplified. A couple of deprivation compounds bisphenol A and 4-cumyl phenol remained

sensed by Gas Chromatography Mass Spectrometry. The consequences specified the treated Bisphenol-A polycarbonate showed some corrosion pits on the surface of the film. The Bisphenol-A polycarbonate underwent substantial depolymerization by the strain NyZ600, which revealed a decrease in manganese from 23.55 to 16.75 kDa and met waste acceptance criteria. According to test results, the injection of strain NyZ600 decreased the external hydrophobicity and increased water-surface collaboration of the film made of Bisphenol-A polycarbonate [83]. In research conducted by Abrusci and team the result of Cobalt, Manganese and Iron stearates is examined the thermal deprivation and post-bacterial photochemical of polyethylene (Low-density Polyethylene). The action of has been evaluated by chemiluminescence, Attenuated Total Reflection FTIR, and gel permeation chromatography of the polyethylenes. The substantial surge in carbonyl directory for Polyethylene comprising stearates was resulted by FTIR concurrently with a clear reduction in molecular weight as restrained thru gel permeation chromatography. All 3 metal stearates encouraged progress of extreme photo and updraft degradation procedures for Low-density Polyethylene comprising metal stearates excluding in the circumstance of the film of Low-density Polyethylene Iron which do not display any significant thermal catalytic effect on degradation and a blend of trio Bacillus MIX (Bacillus subtilis, Bacillus cereus, and Bacillus megaterium) also Brevibacillusborstelensis, was verified for bio deprivation for 90 days by 45 °C of high snapshot and films of thermo-deprivated polyethylene. Low-density Polyethylene was analysed by means of mineralization and diverse techniques was assessed by CO2 extent by means of an unintended impedance method. Bacillus MIX and B. borstelensis combined to bio deprive tarnished Low-density Polyethylene sheets in a very efficient manner. Low-density Polyethylene Cobalt > Low-density Polyethylene-Iron > Polyethylene-Manganese, and mineralization ranges from 9.0 % to 59.2 % after 90 days of bacteriological bio-assay at 45 $^{\circ}$ C. The approach deliberated in this work exhibited abundant advanced degradable efficiency than that previously stated in the literature [84]. In research conducted by Jayashree Lakshmi and team four bacteria were isolated from different plastic dump locales. Using polyethylene as the only carbon source in a mineral salt media Pseudomonas fluorescens and Pseudomonas putida were the only two bacteria that could utilise low-density polyethylene as a carbon source. To confirm that the alkane monooxygenase gene was present in the enurates, gradient PCR was used to confirm the results of the initial screening. Gene-specific primers for alkane monooxygenase were also created. Pseudomonas putida and Pseudomonas fluorescens, two of the four bacteria used, were able to express the ALKB gene, which results in the crucial enzyme alkane monooxygenase, which is essential for the biotransformation of various xenobiotic composites with low-density polyethylene. From this examination, it is contingent that organisms resident to soil can reduce plastic through the appropriate process of period [85]. In research conducted by Yeqi Tan and groups an extracellular lipase from Amycolatopsismediteranei (AML) was illuminated by relative modelling. AML did not have the lid assembly found in greatest true lipases but it has collective resemblances by other plastic impoverishment enzymes. AML was cutinase through a covertly exposed energetic site and was specific for medium-chain fatty acyl moieties, according to modelling and substratum-specific research. Under trivial conditions, AML may swiftly hydrolyze the aliphatic polymers poly (-caprolactone) and poly (1, 4-butylene succinate) stretched with 1, 6-diisocyanatohexane. These polymers continue to be known for taking a long time to decompose in landfills. Both the aromatic plastic Polyethylene Terephthalate (PET) and Poly L-lactic acid were not hydrolyzed by AML. The specificity of AML is moderately described by active site netanalysi-situs and investigation shows that slight variations in the lively site region can take huge belongings on substratum partiality. The obtained prognosis display that extracellular Amycolatopsis enzymes are skilled at impoverishment a broader scope of plastics than is usually recognized [86]. In a study by Oviedo-Anchundia and team samples of polystyrene, polyethylene, and polyurethane were subjected to biodegradation in a liquid media using an ASTM G155-compliant artificial ageing UV chamber for 500 h. Without pre-treatment, with pre-treatment, inoculation, or not stood raised for 90 days at 18 °C to control likely fungal biodegradation with filamentous Antarctic fungi species such Mortierella, Penicillium, and Geomyces. Among 3 fungus strains, Penicillium spp. offered maximum deprivation proportion in old plastics as 28.34 % in polyurethane, 8.39 in polystyrene and 3.53 % in low-density polyethylene, correspondingly which shows the capability of three fungal strains to use Polystyrene, Polyurethane and Low-Density Polyethylene as only carbon source. [87]. In a study by Ganesh Kumar and co-workers films made of polystyrene were subjected to in vitro biodegradation by the bacteria Bacillus paralicheniformis (MN720578), which was shielded from the 3538 m complexity remnants of the Arabian Sea. At 30 $^{\circ}$ C, pH 7.5 %, and 4 % salinity, the environment was most conducive for the formation of the seclude. The study's findings showed that after 60 days of cultivation, the strain contaminated 34 % of polystyrene film. The whole genome order has 4213 protein-coding genes and 4281,959 base pairs, with 45.88 % of the GC content satisfied. Several genes encoding dioxygenases, hydrolases, monooxygenases, peroxidases, and esterases involved in the breakdown of synthetic polymers were detected. In FTIR the changes in the peak strengths and alterations in absorption peaks, less thermal stability in Thermogravimetry Differential Scanning Calorimetry, development of new resonance peaks in Nuclear Magnetic Resonance, morphological changes and development of biofilm was confirmed using SEM. Thus, the study infers that B. paralicheniformis G1 might remain a potent species for the biodegradation of polystyrene [88]. In a study by Ran-Bhattacharva and team the Low-Density Polyethylene-degrading bacteria were hidden from soil samples that were saved from four different sources in Mumbai on Bushnell Haas agar that was overlaid with Low-Density Polyethylene strips. Gram staining and MALTITOF were used to identify the bacteria, and the properties of the colony were looked at in addition to the precise identification of the bacterial isolates (up to species level). Lacto Phenol Cotton Blue staining and Potato Dextrose agar containing chloramphenicol were used to identify the fungi. Both the highly aerobic fungus Aspergillus niger and the facultative anaerobic bacteria Staphylococcus cohnii ssp. urealyticus and Bacillus sp. degraded Low-Density Polyethylene at rates of 5.57 % and 9.8 %, respectively. The degrading capacity of Bacillus species was almost two times more than that of Staphylococcus species. When compared to bacteria, fungi showed the highest biodegradation activity. [89]. Sol Lee Park and colleagues developed an improved Poly (3-hydroxybutyrate) plate assay using cell-grown Poly (3-hydroxybutyrate) produced by Halomonas sp. and enhanced by sodium dodecyl sulphate (SDS). SDS preparation resulted in uniformly distributed Poly (3-hydroxybutyrate) plates that could be discarded for delicate depolymerase activity screening in less time compared to solvent-melted pellet or cell-grown Poly (3-hydroxybutyrate). They were able to identify 15 novel strains using the method. Cutibacterium sp. SOL05, one of the strains, had a high PHB depolymerase activity in both liquid and solid media and shared 98.4 % of its 16 S rRNA sequence with Cutibacterium acne. The Poly (3-hydroxybutyrate) deprivation was substantiated by clear zone size which indicates that this method can be used to easily recognize Poly (3-hydroxybutyrate) debasing bacteria from numerous sources which the advantages of bioplastics [89]. In research conducted by Yeiangchart Boonluksiri and colleagues they isolated Pseudomonas geniculata WS3 polylactic acid -degrading bacterium from the soil sample from the seashores in Korea, including Incheon, Pohang, Jeju Island, Mallipo, and Busan. They combined biostimulation and bioaugmentation to quicker biodegradation of polylactic acid (PLA)where the inundated and soil burial conditions were examined. In the inundated conditions, PLA films in the basal salt medium was inoculated in moreover, wastewater sludge extract or manure extract without and with the addition of diverse nitrogen bases. According to the findings, soy tone was applied to the P. geniculata WS3 and WS3-WS3 cultures as well as the wastewater sludge and manure

extract. The lactic acid content and polylactic acid mass loss percentage were suggestively improved by the extract, demonstrating the soy tone's continued excellence as a nitrogen source for enhancing polylactic acid biodegradation. Furthermore, the calculation of both soy tone and P. geniculata WS3 raced up the biodegradation rate, which resulted in nearly 100 % of PLA mass loss inside 60 days in non-sterile soil burial [90]. In research conducted by Ghosh and colleagues fungi were enumerated from the plastic bags from garbage and their dilapidation potentials of LDPE. The LDPE is together treated by ethanol and untreated LDPE. The Surface geomorphology examination underneath SEM exhibited tarnished areas on F1 preserved low-density polyethylene. A FT-IR analysis revealed that F1 had an impact on the polymer's carbonyl group and C=C group development. In cultivation, the F1 fungus hid the Lipase enzyme. Penicillium simplicissimumstrain Bar2 was discovered by molecular analysis of the F1 isolate. The P. simplicissimum strain Bar2 shown moral potency of low-density polyethylene deprivation of 60.13.56 within 150 days of gestation, which is significantly better than other strains of this other species or other fungus reported by earlier workers. The most notable finding is that after 150 days, P. simplicissimum strain Bar2 taints both raw low-density polyethylene and individually pre-treated (alcohol) polyethylene more or less equally hydrophilic nature for deterioration [91]. In research conducted by Waqas and co-workers two microbial sequestered strains Bacillus amyloliquefaciens and Bacillus safensis were cast-off for their plastic degradation abilities. The fallouts showed that Bacillus safensis was further effective and damaged 18.6 % low-density polyethylene than Bacillus amyloliquefaciens degraded 18 % of low-density polyethylene at an incubation of 30 days which was then analysed for the structural change using SEM. Both strains Bacillus safensis and Bacillus amyloliquefacienscan degrade low-density polyethylene (LDPE) where the Bacillus safensis is greater than Bacillus amyloliquefacienswas confirmed from weight reduction. [92]. In research conducted by Biki and team Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 since the soil of the landfill in addition to assess the microbial dilapidation of the leaf of low-density polythene for 180 days that with low-density polyethylene smith ereens proficient degradation was displayed by thickly colored superficial deviations on the polythene as well as pits and grooves on analysis by sem. For eras, the plastic or synthetic polymer continues without rot in the soil. Phylogenetic analysis using the 16 S rRNA gene sequence provided a solid foundation for the molecular identification of bacteria. The microorganisms, Bacillus sp. strain SM1 and Ralstonia sp. strain SKM2, were still identifiable. Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 caused a weight loss of 18.9 % and 39.2 % in the low-density polyethylene sheet, respectively, and their respective media's pH levels were lowered from 7.12 to 6.67 and 7.12-7.03, respectively. A microscope detected obvious alterations on the Low-Density Polyethylene glass surface, including cracks, darkness, shrinkage, pits, and toughening. FTIR was also used to discover pragmatic differences in the ether, carbon bonds (especially alcohol), and alkane groups of low-density polypropylene sheets. These pragmatic variations included alcohol bond mutation and alkene bond broadening of polythene[93]. In research conducted by Jeevan Kumar Shrestha and team Bacillus spp. was enumerated from soil and curtained for its ability to degrade Low-Density Polyethylene founded on the strong region about the cluster in mineral agar comprising Low-density polyethylene powder, The six Bacillus species, including B. sporothermodurans, B. carboniphilus, B. neidei, B. coagulans, B. megaterium, and B. smithii, were kept for more reasons to make low-density polyethylene breakdown possible. Bacillus spp. grew in mineral agar and mineral broth containing low-density polyethylene fragments at 30 °C for two months before the mass of the fragments started to diminish, which was unmistakably linked to a pH drop. In Mineral broth and 16-26 % in Mineral agar, the amount of weight loss fluctuated. [94]. In a study done by Samanta and colleagues by deliberately involving a bacterial strain identified from the soil at the disposal site, low-density polyethylene was deliberately biodegraded. By using 16 S rRNA sequencing, the bacterial

strain was identified as Bacillus tropicus. Mass reduction by 10.15 % and drop in the worth of tensile strength to 8.59 Megapascal Pressure Unit, elongation at break as 10.85 millimeters, tear strength as 69.18 Neuton, Young's Modulus as 272.36, hardness as 37.6 ShorD, and stiffness as 10, 672.21 Nm correspondingly remained noticed after 40 days of growth. The pH of the growth medium was measured to see whether it had changed as a result of the strain's production of several external and intracellular enzymes. The reduction of Low-Density Polyethylene films with a 10-micron thickness might be accomplished by a microbe. The FTIR investigation's findings showed that the polymeric assembly had only minor intra- and intermolecular alterations, which indicated that dilapidation, had changed the microstructural bond array. As the hydrophilicity was increasing and the contact angle of the film was decreasing, the interaction approach dimension brought about this situation. The bacteriological degradation on the outside of the LDPE film irritating the light scattering phenomenon is explained by the increasing haze and decreasing transparency trends. The surface morphology of the Low-Density Polyethylene film was altered by Bacillus tropicus, as indicated by the AFM, SEM, and SEM data. [95]. In a study by Balasubramanian and co-workers they recovered the (HDPE)deprivating bacteria following plastic waste dumps in the Gulf of Mannar. A total of 15 bacteria (GMB1-GMB15) were isolated by employing the enrichment technique. Pseudomonas sp. and Arthrobacter sp. were identified as the GMB7 and GMB5 bacteria, which were chosen from a group of 15 bacteria for future research based on their ability to break down HDPE. After 30 days of advancement, the estimated mass loss of HDPE remained at around 12 % for Arthrobacter sp. and 15 % for Pseudomonas sp. The microbial bind to hydrocarbon experiment showed that Pseudomonas spcell.'s exterior hydrophobicity remained higher than Arthrobacter sp.'s. Between 2 and 5 days after inoculation for both bacteria, a strong peak of increase was noticed. The FTIR band showed that the ester carbonyl bond index (ECBI), vinyl carbonyl bond index (VBI), and keno carbonyl bond directory (KCBI) all continued to improve, suggesting variations in side-chain modification and functional group confirmation of the bio deprivation[96]. consequently, microorganisms can be employed in the bioremediation of plastics.

4. Factor affecting biodegradation of plastics

The several aspects that control the biodegradation process include the type of organisms involved in the process, the properties of the polymer, and the type of pre-treatment. The polymer characteristics include its mobility, molecular weight, crystallinity, substituents present in its structure, the sort of purposeful business and components delivered to the polymer or plasticizers, wholly perform a significant role in bioremediation of plastics[57,97]. The physical and chemical nature of plastics plays a critical role in the process of biodegradation. It is difficult to degrade the polymers with side-chain when comparison with the polymers without side chains. It has been found the polymers possessing high molecular weight remain extremely tough to reduce. The further factors which have to be considered inside the bio deprivation of polymers are melting temperature, grade of crystallinity and morphology. For example, if it is an amorphous polymer, then it will be tarnished rapidly deprived of any trouble when related to the crystal-like polymer. Melting temperatures is a very important factor in the process of biodegradation. Polymers with high melting points are problematic to breakdown. Consequently, for the bio deprivation of plastics is to be performed by an industrial scale, all these aspects must be considered. The following chemical and physical characteristics are essential to determine the biodegradability of a polymer.

- Functional groups have the ability to make substances more hydrophobic. When opposed to hydrophobic degradation, hydrophilic degradation occurs more quickly.
- 2. Thicker and lower molecular weight polymers fall more quickly than those with higher molecular weight.

- A key factor in determining the percentage of degradation is the morphology of the polymer, or the proportion of crystalline and amorphous regions in the plastic. Amorphous deteriorates more quickly than crystalline does.
- 4. Structure complexity, such as linearity or branching in the polymer.
- 5. The availability of bonds that is simple to break, such amide or ester.
- 6. Molecule composition (a mixture of polymer compounds).
- The physical characteristics of polymers and their nature (e.gfibers, powder, pellets, or films).
- 8. Another crucial element in how quickly plastics degrade is their hardness (Tg). In comparison to soft polymers, hard polymers degrade more slowly [43,45,47,98].

5. Conclusion

Over the past 50 years, several strategies have been to reduce the rising pollution caused by plastic litter. In addition to being developed for commercial purposes, these pollutants were produced by breaking up larger pieces of plastic. By inhaling or ingesting the food chain, the human body was exposed to the agro ecosystem, which causes problems with the blood-brain barrier and decreased fertility. This review article's goal is to assess the ecological issues caused by plastics and the microbial remediation techniques that may be used to understand their fate, behaviour, transit, and administration in the ecosystem. Biofilms are regularly produced as a result of interactions between plastic and bacteria. These biofilms have an impact on temperature, temperature regulation, and biogeochemical cycles, as well as biological consequences on everything from single genes to entire ecosystems. It is anticipated that an approach based on the proper fusion of such multidisciplinary research with entirely ecological policy initiatives would give practical management solutions for the environmental disposal of plastic waste. This review's framework and road map for developing ways to control and address local soil plastic pollution are one of its significant contributions. At this critical juncture in the evolution of biodegradable polymers, societal attitudes toward environmental responsibility are growing stricter. According to the study, microbes are the most effective technique for bio remediating plastics. To establish an eco-friendly environment, microorganisms with adjuvants and the ability to mine enzymes from them can be employed in the bioremediation of plastics.

Ethical approval and consent to participate

'Not applicable'.

Funding

'Not applicable'.

CRediT authorship contribution statement

Venkat Kumar S, V.saravanan, R.Rajeshkannan: Conceptualization/idea for the article. R.Shobika, Madhavi Reddy: Methodology. R. Shobika, SoghraNashath Omer, Madhavi Reddy: Formal analysis and investigation. P.Lokesh, Venkat Kumar S: Writing-original draft preparation. Panchamoorthy Saravanan: Writing- review and editing. S.Venkat Kumar: Supervision.

Consent of publication

'Not applicable'.

Declaration of Competing Interest

The authors declare that they have no known competing interests or

personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgment

The authors are thankful to School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore,India for the technical support provided.

References

- [1] A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: a comprehensive review, Biotechnol. Adv. 26 (2008) 246–265.
- [2] A. Rani, P. Singh, Screening of polyethylene degrading fungi from polyethylene dump site, Int. J. Chemtech. Res. 10 (3) (2017) 699–704.
- [3] D. Lithner, A. Larsson, G. Dave, Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition, Sci. Total Environ. 409 (18) (2011) 3309–3324.
- [4] K. Willis, C. Maureaud, C. Wilcox, B.D. Hardesty, How successful are waste abatement campaigns and government policies at reducing plastic waste into the marine environment? Mar. Policy 96 (2018) 243–249, https://doi.org/10.1016/j. marpol.2017.11.037.
- [5] R. Geyer, Chapter 2 Production, use, and the fate of synthetic polymers, in: T. M. Letcher (Ed.), Plastic Waste and Recycling, Academic Press, Oxford, 2020, pp. 13–32.
- [6] R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Sci. Adv. 3 (7) (2017), e1700782.
- [7] I. Ioannidis, I. Anastopoulos, I. Pashalidis, Microplastics as radionuclide (U-232) carriers, J. Mol. Liq. 351 (2022), 118641, https://doi.org/10.1016/J. MOLLIQ.2022.118641.
- [8] J. Yuan, J. Ma, Y. Sun, T. Zhou, Y. Zhao, F. Yu, Microbial degradation and other environmental aspects of microplastics/plastics, Sci. Total Environ. 715 (2020), 136968.
- [9] I. Ioannidis, I. Anastopoulos, I. Pashalidis, Single-use surgical face masks as radionuclide (U-232 and Ra-226) carriers, J. Mol. Liq. 342 (2021), 117578, https://doi.org/10.1016/J.MOLLIQ.2021.117578.
- [10] U. Benson Nsikak, E. Bassey David, Palanisami Thavamani, COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint, Heliyon 7 (2) (2021), e06343, https://doi.org/10.1016/j.heliyon.2021.e06343.
- [11] B. Battulga, M. Atarashi-Andoh, T. Nakanishi, J. Koarashi, A new approach to extracting biofilm from environmental plastics using ultrasound-assisted syringe treatment for isotopic analyses, Sci. Total Environ. 849 (2022), 157758, https:// doi.org/10.1016/J.SCITOTENV.2022.157758.
- [12] H. Bulkeley, K. Askins, Waste interfaces: biodegradable waste, municipal policy and everyday practice, Geogr. J. 175 (2009) 251–260, https://doi.org/10.1111/ i.1475-4959.2008.00310.x.
- [13] Arutchelvi, M. Sudhakar, A. Arkatkar, M. Doble, S Bhaduri, P.V. Uppara, Biodegradation of polyethylene and polypropylene, Indian J. Biotechnol. 7 (2008) 9–22.
- [14] V. Mahalakshmi, S.N. Andrew, Assessment of physicochemically treated plastic by fungi, Ann. Biol. Res. 3 (2012) 4374–4381.
- [15] Z. Montazer, M.B. Habibi-Najafi, M. Mohebbi, Oromiehei, Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil, J. Polym. Environ. 26 (2018) 3613–3625, https://doi.org/10.1007/s10924-018-1245-0.
- [16] L.D. Poulikakos, C. Papadaskalopoulou, B. Hofko, F. Gschösser, A.C. Falchetto, M. Bueno, M. Arraigada, J. Sousa, R. Ruiz, C. Petit, Harvesting the unexplored potential of European waste materials for road construction, Resour. Conserv. Recycl. 116 (2017) 32–44.
- [17] V.M. Pathak, Review on the current status of polymer degradation: a microbial approach, Bioresour. Bioprocess 4 (2017) 15.
- [18] Y. Tokiwa, B. Calabia, C. Ugwu, S. Aiba, Biodegradability of plastics, Int. J. Mol. Sci. 10 (2009) 3722–3742, https://doi.org/10.3390/ijms10093722.
- [19] N. Wierckx, T. Narancic, C. Eberlein, R. Wei, O. Drzyzga, A. Magnin, in: R. Steffan (Ed.), Plastic biodegradation: Challenges and opportunities in Consequences of Microbial Interactions With Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation, Springer International Publishing, Cham, 2018, pp. 1–29.
- [20] L. Hou, D. Kumar, C.G. Yoo, I. Gitsov, E.L.W. Majumder, Conversion and removal strategies for microplastics in wastewater treatment plants and landfills, Chem. Eng. J. 406 (2021), 126715.
- [21] K. Anjana, M. Hinduja, K. Sujitha, G. Dharani, Review on plastic wastes in marine environment–Biodegradation and biotechnological solutions, Mar. Pollutt. Bull. 150 (2020), 110733.
- [22] E. Syranidou, K. Karkanorachaki, F. Amorotti, M. Franchini, E. Repouskou, M. Kaliva, M. Vamvakaki, B. Kolvenbach, F. Fava, P.F. Corvini, Biodegradation of weathered polystyrene films in seawater microcosms, Sci. Rep. 7 (2017) 17991.
- [23] W. Pattanasuttichonlakul, N. Sombatsompop, B. Prapagdee, Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge

- combined with PLA-degrading bacterium, Int. Biodeterior. Biodegrad. 132 (2018)
- [24] S. Muenmee, W. Chiemchaisri, C. Chiemchaisri, Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site, Int. Biodeterior. Biodegrad. 102 (2015) 172–181.
- [25] Z. Chen, W. Zhao, R. Xing, S. Xie, X. Yang, P. Cui, J. Lü, H. Liao, Z. Yu, S. Wang, Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology, J. Hazard. Mater. 384 (2020), 121271.
- [26] H.S. Auta, C.U. Emenike, S.H. Fauziah, Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environ. Pollut. 231 (2017) 1552–1559.
- [27] Y. Lou, P. Ekaterina, S.S. Yang, B. Lu, B. Liu, N. Ren, P.F.X. Corvini, D. Xing, Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome, Environ. Sci. Technol. 54 (2020) 2821–2831.
- [28] F. Yan, R. Wei, Q. Cui, U.T. Bornscheuer, Y.J. Liu, Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum, Microb. Biotechnol. 14 (2) (2021) 374–385.
- [29] H.P. Austin, M.D. Allen, B.S. Donohoe, N.A. Rorrer, F.L. Kearns, R.L. Silveira, B. C. Pollard, G. Dominick, R. Duman, K. ElOmari, Characterization and engineering of a plastic-degrading aromatic polyesterase, Proc. Natl. Acad. Sci. 115 (2018) E4350–E4357.
- [30] H.F. Son, I.J. Cho, S. Joo, H. Seo, H.Y. Sagong, S.Y. Choi, S.Y. Lee, K.J. Kim, Rational protein engineering of thermo-stable PETase from Ideonellasakaiensis for highly efficient PET degradation, ACS Catal. 9 (2019) 3519–3526.
- [31] B. Toussaint, B. Raffael, A. Angers-Loustau, D. Gilliland, V. Kestens, M. Petrillo, Review of micro- and nanoplastic contamination in the food chain, Food Addit. Contam. Part A 36 (5) (2019) 639–673.
- [32] S. Tsushima, Y. Matsushita, Technical Report on the PCR-DGGE Analysis of Bacterial and Fungal Soil Communities. Tsukuba, National Institute for Agro-Environmental Sciences,, 2010 ver. 3.3.
- [33] Jyoti Kaushal, Madhu Khatri, Shailendra Kumar Arya, Recent insight into enzymatic degradation of plastics prevalent in the environment: a mini – review, Clean. Eng. Technol. 2 (2021), 100083, https://doi.org/10.1016/j. clet.2021.100083.
- [34] A.L. Pometto, B.T. Lee, K.E. Johnson, Production of an extracellular polyethylenedegrading enzyme(s) by Streptomyces species, Appl. Environ. Microbiol 58 (1992) 731–733.
- [35] J.S. Seo, Y.S. Keum, Q.X. Li, Bacterial degradation of aromatic compoundsInt, J. Environ. Res 6 (2009) 278–279.
- [36] S. Venkatesh, Shahid Mahboob, Marimuthu Govindarajan, A.Khalid Al-Ghanim, Zubair Ahmed, Norah Al-Mulhm, R. Gayathri, S. Vijayalakshmi, Microbial degradation of plastics: sustainable approach to tackling environmental threats facing big cities of the future, J. King Saud. Univ. Sci. 33 (3) (2021), 101362, https://doi.org/10.1016/j.iksus.2021.101362.
- [37] S.M. Al-Salem, Study of the degradation behaviour of virgin and biodegradable plastic films in marine environment using ASTM D 6691, J. Polym. Environ. 30 (2022) 2329–2340, https://doi.org/10.1007/s10924-021-02351-8.
- [38] K.S. Mohan, T. Srivastava, Microbial deterioration and degradation of polymeric materials, J. Biochem. Tech. 2 (4) (2011) 210–215.
- [39] Y. Zheng, E.K. Yanful, A.S. Bassi, A review of plastic waste biodegradation, Crit. Rev. Biotechnol. 25 (4) (2005) 243–250, https://doi.org/10.1080/ 07388550500346359.
- [40] S. Singh, P.S. Rawat, Biodegradation of plastic: an innovative solution to safe the human health and environment, in: Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution: Pennsylvania, 2019, IGI Global, USA, 2019, pp. 435–461, https://doi.org/10.4018/978-1-5225-9452-9.ch022.
- [41] G. Gnanavel, V. Valli, M. Thirumarimurugan, T. Kannadasan, Degradation of polyethylene in the natural environment, Int J. Res EngTechnol3 2 (2013) 1156–1165.
- [42] V. Babaahmadi, H. Amid, M. Naeimirad, S. Ramakrishna, Biodegradable and multifunctional surgical face masks: a brief review on demands during COVID-19 pandemic, recent developments, and future perspectives, Sci. Total Environ. 798 (2021), 149233, https://doi.org/10.1016/J.SCITOTENV.2021.149233.
- [43] S.K. Ghosh, S. Pal, S. Ray, Study of microbes having potentiality for biodegradation of plastics, Environ. SciPollut Res 20 (7) (2013) 4339–4355.
- [44] B. Imre, B. Pukánszky, Compatibilization in bio-based and biodegradable polymer blends, Eur. Polym. J. 49 (6) (2013) 1215–1233, https://doi.org/10.1016/j. eurnolymi.2013.01.019.
- [45] J.G. Lundin, C.L. McGann, N.K. Weise, L.A. Estrella, R.B. Balow, B.C. Streifel, J. H. Wynne, Iodine binding and release from antimicrobial hemostatic polymer foams, React. Funct. Polym. 135 (2019) 44–51, https://doi.org/10.1016/J. REACTFUNCTPOLYM.2018.12.009.
- [46] S.K. Kale, A.G. Deshmukh, M.S. Dudhare, V.B. Patil, Microbial degradation of plastic: a review, J. Biochem Tech. 6 (2) (2015) 952–961.
- [47] Y. Tokiwa, B.P. Calabia, C.U. Ugwu, S. Aiba, Biodegradability of plastics, Int J. MolSci10 9 (2009) 3722–3742, https://doi.org/10.3390/ijms10093722.
- [48] D. Marković, H.H. Tseng, T. Nunney, M. Radoičić, T. Ilic-Tomic, M. Radetić, Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles, Appl. Surf. Sci. 527 (2020), 146829, https://doi.org/10.1016/J.APSUSC.2020.146829.
- [49] S. Grima, V. Bellon-Maurel, P. Feuilloley, F. Silvestre, Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations, J. Polym. Environ. 8 (2000) 183–195, https://doi.org/10.1023/A:1015297727244.

- [50] O.S. Jumaah, Screening of plastic degrading bacteria from dumped soil area, IOSR J. Environ. Sci. Toxicol. Food Technol. 11 (2017) 93–98, https://doi.org/10.9790/ 2402-1105029398
- [51] J. Hammer, M.H. Kraak, J.R. Parsons, Plastics in the marine environment: the dark side of a modern gift, Rev. Environ. Contam. 220 (2012) 1–44, https://doi.org/ 10.1007/978-1-4614-3414-6_1.
- [52] J.D. Gu, Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances, Int. Biodeterior. Biodegrad. 52 (2) (2003) 69–91, https://doi.org/10.1016/S0964-8305(02)00177-4.
- [53] S.S. Muthu, Roadmap to sustainable textiles and clothing: environmental and social aspects of textiles and clothing supply chain, Springer,, NY, USA, 2014.
- [54] M.E. Hodson, C.A. Duffus-Hodson, A. Clark, M.T. Prendergast-Miller, K.L. Thorpe, Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates, Environ. Sci. Technol. 51 (2017) 4717–4721.
- [55] D. Brennecke, B. Duarte, F. Paiva, I. Caçador, J. Canning-Clode, Microplastics as vector for heavy metal contamination from the marine environment, Estuar. Coast. Shelf Sci. 178 (2016) 189–195, https://doi.org/10.1016/J.ECSS.2015.12.003.
- [56] A. Sharma, A. Sharma, Degradation assessment of low-density polythene (LDPE) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri, J. Sci. Ind. Res 63 (2004) 293–296.
- [57] M. Shimao, Biodegradation of plastics, Curr. Opin. Biotechnol. 12 (2001) 242.
- [58] A.C. Albertsson, S.O. Andersson, S. Karlsson, The mechanism of biodegradation of polyethylene, Polym. Degrad. Stab. 18 (1987) 73–87.
- [59] V. Balasubramanian, K. Natarajan, V. Rajesh Kannan, P. Perumal, Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical and biological treatments, Environ. Sci. Pollut. Res. 21 (21) (2014) 12549–12562.
- [60] R. Premraj, M. Doble, Biodegradation of polymers, Indian J. Biotechnol. 14 (2) (2005) 186–193
- [61] A. Sivan, New perspectives in plastic biodegradation, Curr. Opin. Biotechnol. 22 (3) (2011) 422–426, https://doi.org/10.1016/j.copbio.2011.01.013.
- [62] L.A. Underkofler, Production of microbial enzymes and their applications, Appl. Microbiol 6 (1958) 212–221.
- [63] M. Kumar, X. Xiong, M. He, D.C.W. Tsang, J. Gupta, E. Khan, S. Harrad, D. Hou, Y. S. Ok, N.S. Bolan, Microplastics as pollutants in agricultural soils, Environ. Pollut. 265 (2020), 114980, https://doi.org/10.1016/J.ENVPOL.2020.114980.
- [64] A.M. Mayer, R.C. Staples, Laccase new functions for an old enzyme, Phytochemistry 60 (2002) 561–565.
- [65] M. Hofrichter, T. Lundell, A. Hatakka, Conversion of milled pine wood by manganese peroxidase from Phlebia radiata, Appl. Environ. Microbiol. 67 (2001) 4588–4593.
- [66] S.K. Phua, E. Castillo, J.M. Anderson, A. Hiltner, Biodegradation of polyurethane in vitro, J. Biomed. Mater. Res. 21 (1987) 231–246.
- [67] R.J. Müller, H. Schrader, J. Profe, K. Dresler, W.D. Deckwer, Enzymatic degradation of poly (ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca, Macromol. Rapid Commun. 26 (2005) 1400–1405.
- [68] R.A. Wilkes, L. Aristilde, Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges, J. Appl. Microbiol. 123 (3) (2017) 582–593.
- [69] M. Barth, T. Oeser, R. Wei, J. Then, J. Schmidt, W. Zimmermann, Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobififidafusca, Biochem. Eng. J. 93 (2015) 222–228.
- [70] H.S. Auta, C.U. Emenike, S.H. Fauziah, Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environ. Pollut. 231 (Pt 2) (2017) 1552–1559, https://doi.org/10.1016/j. envpol.2017.09.043.
- [71] A.J. Mohan, V.C. Sekhar, T. Bhaskar, K. Madhavan Nampoothiri, K, Microbial assisted high impact polystyrene (HIPS) degradation (https://doi.org/), Bioresour. Technol. 213 (2016) (2016) 204–207, https://doi.org/10.1016/j. highertech 2016 03 021
- [72] Vini C. Sekhar, K. Madhavan Nampoothiri, Arya J. Mohan, Nimisha R. Nair, Thallada Bhaskar, Ashok Pandey, Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide, J. Hazard. Mater. 15 (2016) 347–354, https://doi.org/10.1016/j. ihazmat.2016.07.008.
- [73] Deepika Chauhana, Guncha Agrawala, Sujit Deshmukhb, Susanta Sinha Royb, Richa Priyadarshini, Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation, RSC Adv. 8 (2018) 37590-37599 https://doi.org/10.1039/C8RA06448R
- 37590–37599, https://doi.org/10.1039/C8RA06448B.
 [74] G. Abirami, M. Srimathi, M. Suganthi, C. Ramprasath, J. Manjunathan, Plastic degrading ability of laccase enzyme isolated from garbage dumping sites of Chennai, Poll. Res 40 (1) (2021) 199–202.
- [75] Aneta K. Urbanek, Mateusz C. Strzelecki, Aleksandra M. Mirończuk, The potential of cold-adapted microorganisms for biodegradation of bioplastics, Waste Manag. 119 (2021) 72–81, https://doi.org/10.1016/j.wasman.2020.09.031.
- [76] M. Amin, H.N. Bhatti, S. Sadaf, Muhammad Bilal, Optimization of lipase production by response surface methodology and its application for efficient biodegradation of polyester vylon-200, Catal. Lett. 151 (2021) 3603–3616, https:// doi.org/10.1007/s10562-021-03603-x.
- [77] Z. Soleimani, S. Gharavi, M. Soudi, Z. Moosavi-Nejad, A survey of intact low-density polyethylene film biodegradation by terrestrial Actinobacterial species, Int Microbiol 24 (2021) 65–73, https://doi.org/10.1007/s10123-020-00142-0.

- [78] J. Abraham, E. Ghosh, P. Mukherjee, A. Gajendiran, Microbial degradation of low-density polyethylene, Environ. Prog. Sustain. Energy 36 (2017) 147–154, https://doi.org/10.1002/ep.12467.
- [79] Edith B. MouafoTamnou, Antoine TamsaArfao, Mireille E. Nougang, Claire S. Metsopkeng, Olive V.Noah Ewoti, Luciane M. Moungang, Paul A. Nana, Linda-Rose AtemTakang-Etta, Fanny Perrière, T.élesphore Sime-Ngando, Moïse Nola, Biodegradation of polyethylene by the bacterium Pseudomonas aeruginosa in acidic aquatic microcosm and effect of the environmental temperature, Environ. Chall. 3 (2021), 100056, https://doi.org/10.1016/j.envc.2021.100056.
- [80] Youqiang Xu, Xiao Liu, Jingrong Zhao, Huiqin Huang, Mengqin Wu, Xiuting Li, Weiwei Li, Xiaotao Sun, Baoguo Sun, An efficient phthalate ester-degrading Bacillus subtilis: degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme, Environ. Pollut. 273 (2021), 116461, https://doi.org/10.1016/j.envpol.2021.116461.
- [81] Shahida Ibrahim, Rakesh Kumar Gupta, Abdul Rasheed War, Barkat Hussain, Amit Kumar, Tariq Sofi, Ahmad Noureldeen, Hadeer Darwish, Degradation of chlorpyriphos and polyethylene by endosymbiotic bacteria from citrus mealybug, Saudi J. Biol. Sci. 28 (6) (2021) 3214–3224, https://doi.org/10.1016/j. sibs 2021 03 058
- [82] P. Wang, J. Zhao, Y. Ruan, X. Cai, J. Li, L. Zhang, H. Huang, Degradation of polypropylene by the Pseudomonas aeruginosa strains LICME WZH-4 and WGH-6 (2022), J. Polym. Environ. 30 (2022) 3949–3958, https://doi.org/10.1007/ s10924-022-02480-8.
- [83] W. Yue, C.-F. Yin, L. Sun, J. Zhang, Y. Xu, N.-Y. Zhou, Biodegradation of bisphenola polycarbonate plastic by Pseudoxanthomonas sp. strain NyZ600, J. Hazard. Mater. 416 (2021), 125775, https://doi.org/10.1016/j.jhazmat.2021.12577.
- [84] C. Abrusci, J.L. Pablos, I. Marín, E. Espí, T. Corrales, F. Catalina, Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films, Int. Biodeterior. Biodegrad. 83 (2013) 25–32, https://doi.org/10.1016/j. ibiod.2013.04.002.
- [85] P. Jayashree Lakshmi, K. VanmathiSelvi, Genetic analysis of low-density polyethylene degrading bacteria from plastic dump sites, Indian J. Sci. Technol. 13 (48) (2020) 4732–4738, https://doi.org/10.17485/IJST/v13i48.2066.
- [86] Yeqi Tan, Gary T. Henehan, Gemma K. Kinsella, Barry J. Ryan, An extracellular lipase from Amycolatopsismediterannei is a cutinase with plastic degrading activity, Comput. Struct. Biotechnol. J. 19 (2021) 869–879, https://doi.org/ 10.1016/j.csbj.2021.01.019.
- [87] M.J. Miah, J. Pei, H. Kim, R. Sharma, J.G. Jang, J. Ahn, Property assessment of an eco-friendly mortar reinforced with recycled mask fiber derived from COVID-19 single-use face masks, J. Build. Eng. 66 (2023), 105885, https://doi.org/10.1016/ J.JOBE.2023.105885.
- [88] A. Ganesh Kumar, M. Hinduja, K. Sujitha, N. NivedhaRajan, G. Dharani, Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis, Sci. Total Environ. 774 (2021), 145002, https://doi.org/ 10.1016/j.scitotenv.2021.145002.
- [89] P. Singh, K.D. Kumar, R. Kumar, Degradation of polyfurfuryl alcohol-based biopolymer by soil-burial and photo-degradation methods, J. Polym. Environ. 30 (2022) 1920–1931, https://doi.org/10.1007/s10924-021-02330-z.
- [90] Sol Lee Park, Jang Yeon Cho, Tae-Rim Choi, Hun-Suk Song, Shashi Kant Bhatia, Ranjit Gurav, See-Hyoung Park, Kyungmoon Park, Jeong Chan Joo, Sung Yeon Hwang, Yung-Hun Yang, Improvement of polyhydroxybutyrate (PHB) plate-based screening method for PHB degrading bacteria using cell-grown amorphous PHB and recovered by sodium dodecyl sulfate (SDS), Int. J. Biol. Macromol. 177 (2021) 3413–3421, https://doi.org/10.1016/j.ijbiomac.2021.02.098.
- [91] S.K. Ghosh, S. Pal, De-polymerization of LDPE plastic by Penicillium simplicissimum isolated from municipality garbage plastic and identified by ITSs locus of Rdna, Vegetos 34 (2021) 57–67, https://doi.org/10.1007/s42535-020-00176-9.
- [92] M. Waqas, M. Haris, N. Asim, H. Islam, A. Abdullah, A. Khan, H. Khattak, M. Waqas, S. Ali, Biodegradable potential of Bacillus amyloliquefaciens and Bacillus safensis using low density polyethylene thermoplastic (LDPE) substrate, Eur. J. Public Health 5 (2) (2021) em0069, https://doi.org/10.21601/ejeph/9370.
- [93] S.P. Biki, S. Mahmud, S. Akhter, M.J. Rahman, J.J. Rix, M.A. AlBachchu, M. Ahmed, (2021) Polyethylene degradation by Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 isolated from land fill soil site, Environ. Technol. Innov. 22 (2021), 101495, https://doi.org/10.1016/j.eti.2021.101495.
- [94] T.A. Aragaw, Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario, Mar. Pollut. Bull. 159 (2020), 111517, https://doi.org/ 10.1016/J.MARPOLBUL.2020.111517.
- [95] O. Pikuda, M. Lapointe, O.S. Alimi, D. Berk, N. Tufenkji, Fate of microfibres from single-use face masks: Release to the environment and removal during wastewater treatment, J. Hazard. Mater. 438 (2022), 129408, https://doi.org/10.1016/J. JHAZMAT 2022 129408
- [96] V. Balasubramanian, K. Natarajan, B. Hemambika, N. Ramesh, C.S. Sumathi, R. Kottaimuthu, V. Rajesh Kannan, High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India, Lett. Appl. Microbiol 51 (2) (2010) 205–211, https://doi.org/10.1111/j.1472-765X.2010.02883.x.
- [97] T. Artham, M. Doble, Biodegradation of aliphatic and aromatic polycarbonates, Macromol. Biosci. 8 (1) (2008) 14–24, https://doi.org/10.1002/mabi.200700106.
- [98] W.D. Luzier, Materials derived from biomass/biodegradable materials, Doi(1992), Proc. Natl. Acad. Sci. U. S. A. 89 (3) (1992) 839–842, https://doi.org/10.1073/pnas.89.3.839.